注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

杨鸿智-后现代理论医学博客

《后现代医学》、《正反馈医学》、《自体原位器官重构技术》

 
 
 

日志

 
 
关于我

这是一个宣传后现代理论医学的博客.后现代理论医学是以系统理论为指导的新医学.该理论认为,在生命组织中干细胞是决定机体功能状态最基本的因素.通过调节机体内环境和为干细胞提供再生所需要的物质和能量,就可以使干细胞在患者体内原位再生,实现器官重构,使器质性病变得到治疗.现在,已经在北京医药信息学会内成立了后现代理论医学专业委员会,杨鸿智是主任委员.

网易考拉推荐

(40)第十八章 关于基因的各种学说(1)  

2013-06-08 22:36:25|  分类: 干细胞病 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

40)第十八章 关于基因的各种学说(1

 

孟德尔遗传学定律为不连续变异现象提供了绝妙的说明。只要涉及到明确的性状如豌豆中的绿对黄、光滑豆粒对起皱豆粒,这些定律就很容易运用。1900年以后发表了成百上千篇文章论证了在多种动植物中都存在着孟德尔遗传现象从而对任何可以观察到的不连续变异的性状赋予了孟德尔遗传学根据。

 

然而在一个相当长的时间内不承认孟德尔遗传能普遍适用的反对意见很流行。将这种反对意见完全途之于无知或保守将是错误的,因为这样解释未免过于简单化。实际上反对者都认为他们有完全充分的反对理由。此外,公正地讲他们并不否认某些孟德尔遗传现象,他们所反对的只是将一切遗传现象都归之于孟德尔遗传。由于这些反对者之中有很多是第一流的生物学家,所以分析一下他们所侍的理由就很有必要。

 

近代的历史学家往往忘记了在19世纪和20世纪转折之际大多数达尔文主义者动物学家和植物学家之所以关注遗传现象是因为它和物种问题及进化学说有关。因此这些达尔文主义者只阅读对进化问题最感兴趣的两位孟德尔主义者、德弗里和贝特森的著作,他们的观点便促使这些达尔文主义者坚决站在反对立场。德弗里和贝特森都宣扬遗传现象的不连续性论证了进化起源的不连续性。他们两人都是本质论者和骤变论者(见第十二章),都不太相信自然选择。因此他们的观点和达尔文主义者的完全不同,后者在自然界中随处都见到渐进进化演变的证据。由于孟德尔主义者声称遗传变异(即不连续性)的方式和进化方式密切相关,又由于他们自己认为进化不是渐进的,连续的;所以达尔文主义博物学家便被迫必须提出某种非孟德尔式的、连续性遗传的方式来解释渐进进化(Mayr and Provine1980)。

 

就博物学家看来,孟德尔主义的最大弱点是没有解释连续变异。当时几乎每一个人都仍然承认变异的两重性(连续变异与不连续变异),孟德尔主义被认为没有对数量变异(quantitstivevariation)作出解释。我们还记得魏斯曼、德弗里以及1880年代和1890年代的其它学者用两个亲本所提供的(相同的)泛子或生源体的数目不相同来解释数量遗传。德弗里曾经讲过,“泛子的相对数目可能改变,有一些可能增加,有的可能减少或者几乎完全消失……最后单个泛子的集群也可能变化。所有这些过程都足以解释剧烈波动(个体的、连续的)的变异”(190074)。当孟德尔学说(对相对性状每个亲本只提供一个因子)被接受后这种解释就落了空。在这种情况下连续变异就没有得到说明。我在德弗里以后的著作中也没有发现代替这一不均等分配学说的其它解释。

 

对绝对(唯一只有)孟德尔遗传现象的反对者提出了这样的问题:在真正是数量性状(如个体大小)的情况下后代的中间状态(即后代个体有大有小)岂不是证明了不存在不连续因素?难道不是揭示了有两类遗传现象,即不连续变异的孟德尔遗传和连续变异的其它方式的遗传?解释连续变异遗传岂不更为重要?因为连续变异是达尔文渐进进化学说的基础。由于缺乏一种数量遗传学说因而在进化生物学家中发生分裂,形成了两个对立的学派,一般通称为孟德尔学派和生物统计学派。但是上述这两个名称只限定在19001906年这期间适用,而这场争论却是从1894年贝特森的《变异研究的资料》出版后即已开始一直延续到1930年代和1940年代进化综合时期。这场争论在进化生物学中造成了深刻分歧,在本世纪的头三十年中一直没有消除(Mayr and Provine1980)。这是两种哲学观点的冲突,孟德尔学派崇尚本质论思想和偏重遗传单个单位的行为,而生物统计学派则关注种群现象并热衷于整体论解释。甚至可以说这两个对立面的分歧可以远溯到十八世纪。实际上这些古老问题之一的融合遗传必须先予介绍才能进而分析1900年以后所发生的事态。

 

融合遗传

 

博物学家和动物育种者早在十八世纪已知道“突变”(不连续变异体)一旦出现可以历经好多世代不变。与此相对映的是当把不同物种或不同的驯化品种、地理品种(地理宗)杂交后,它们就“融合”(blended 原意为混合,掺合,搀杂)了。例如达尔文在使用“融合”这字时几乎毫无例外地总是和物种或品种之间的杂交有关。1859年以后Moritz Wagner和其它博物学家在写到融合时也是如此。“融合”这个词是根据在绝大多数物种间杂交的F2代很少有可察知的孟德尔分离现象的完全正确观察结果而提出的(见第十四章 ,克尔路德)。必须强调的是所有这些学者所考虑的是表现型,而且由于物种间的大多数差异是高度多基因性的,物种和品种间杂交的表现型一般都是中间状态,即它们“融合”了。在起初创用这词时指的是表现型的外观。

 

这是不是意味着这些学者也相信所观察到的表现型性状的遗传因子也融合了?他们显然是这样,但只是部分相信。例如达尔文曾多次提到父本和母本的微芽在受精时既可能融合也可以只是彼此贴俯在一起以后又行分开。达尔文特别强调回复突变频率完全否定了认为他相信绝对融合的看法。他在《物种起源》(1859)中提到回复突变不下于八次,在《家养条件下动物和植物的变异》(1868)一书中单独辟了一章 (十三章 )来讨论这个问题。在该书的第二版(1893)中他含蓄地提到也许“这样说更恰当,即两个亲种的因子在杂种中以双重状态存在:融合在一起或完全分离”。在其它地方他还提到杂交后代的“纯粹”微茅和“杂种”微芽。达尔文还特别赞赏地提到淳丁的亲代性状在杂种中不融合的观点(见第十四章 )。他在1856年给赫胥黎的信中(MLD11103)也许比他所发表的所有文章都更好地表明了他深信颗粒遗传:“我近来往往思考(很粗略地和模糊地)真正受精的繁殖将会是两个不同个体(或者不如说是无数个体,因为每个亲本又有它的亲代和祖先)的某种形式的混合而不是真正的融合。我想不出还有别的看法能解释杂交的生物能在如此大的程度上回复到其祖先形态。”

 

应当承认达尔文在后来的著作中再也没有像在这封信中特别强调遗传的颗粒学说,但是他也决没有像反对者所声称的那样采纳绝对的融合学说。德弗里(1889)曾正确指出达尔文对遗传现象的解释从总体上来看比起融合遗传更符合于颗粒遗传。达尔文虽然是两卷集的变异著作的作者,但他的主要兴趣不在于创立一种遗传学说,因此他更多的是引用回复突变作为共同祖先的证据而不是用来作为遗传学说的证据。他对马和驴的腿部和肩头往往粉现斑马的条纹特别感兴趣就说明他是用之来支持共同祖先学说的。

 

内格里(Nageli)是达尔文以后公然支持绝对融合遗传学说的少数生物学家之一(可能还包括赫特维克),承认融合遗传和以微芽,分子团或其它颗粒作为遗传物质的假说是一致的,只要在受精时父本和母本的颗粒互相融合。所有其它学者不仅认为颗粒是遗传载体(其中有一些在受精时当然可能融合)而且还认为至少还有一些微粒可以完整地从一代传递给下一代(例如Galton1876de Vries1889)。断言达尔文和多数1900年以前的研究变异的学者承认绝对融合遗传(我认为这是菲雪在1930年首先提出的)并没有事实根据(可参考Ghiselin1969Vorzimmer1970)。这一点在当时是很清楚的,这可以从美国胚胎学家E.G.Conklin1898年所说的一段话看出:“很多其它现象,尤其是颗粒遗传、躯体各部分的独立变异性、以及潜在的和明显的性状的遗传传递,在目前还只能把它们看作是结构的超显微结构单位来解释”(引自Carlson1966)。考虑到在1900年以前人们普遍接受颗粒遗传学说,即从亲代传递的遗传因子在受精后并不融合而是在全部生活史中保持其完整性的学说,因此有人说1900年重新发现孟德尔定律的最重要结果是用颗粒遗传取代公认的融合遗传这种说法是十分错误的。很多学者(包括达尔文)都同意两者兼而有之。我觉得继续承认融合遗传在1900年以后对孟德尔主义的抵制上只起了很小的作用。菲雪(RAFisher)的解释以及相信这解释的人忘记了在1909年前后遗传型和表现型还没有明确区分,“融合”这词传统上是用于表示表现型的中间状态(尤其是在物种杂交中)。它与遗传物质的行为并不一定必然有关。

 

因此就必须澄清孟德尔主义以前和早期的另一个模糊不清的。重要问题,表现型和遗传型的区别。

 

表现型和遗传型的区别

 

关于融合遗传的争论表明区分遗传型(个体的全部遗传组成)与表现型(在发育中由遗传型转变而成的个体性状)是多么重要。

 

19世纪的生物学家中几乎只有高尔敦(Gallon)注意到这种区别。他用的新词“stirp”以及重新定义的“heredity”显然指的是遗传型,他的语汇“nature vsnurture”(本性与教养、或遗传与环境)强调了这种区别。对这个问题一直未予重视,不仅在达尔文的著作中而且在达尔文以后也是如此。1900年当遗传学这门科学诞生时,除了魏斯曼的种质和体质而外无论在名称上还是概念上都没有将两者加以区别。在德弗里看来个体作为一个整体只不过是受精卵(合子)细胞核中原来一套泛子的放大图像。这正是他从不介意他的“突变”这个词指的究竟是表现型还是作为其基础的种质的原因。

 

但是动、植物育种者一直知道并没有像德弗里的概念所影射的那种遗传决定论。有很多性状、例如蕃茄果实的大小、既由遗传组成支配,又受环境因素影响。

 

首先认识到需要在术语上加以区别的是丹麦遗传学家约翰逊(Wilhelm Johannsen18571927)。约翰逊的出身和所受的教育都极不寻常。他主要靠自学,早期大部分时间是在制药和化学实验室受教育。当他最后决定转向研究植物生理学时,他和他所崇拜的高尔敦相仿,特别强调定量方法和统计分析。他还是一位造地的本质论者,他对菜豆经过许多代自花受粉后豆粒大小出现相当大的变异感到很难理解,因为经过多代白花受粉所产生的菜豆按道理应当在遗传上是完全相同的而且大部分是纯合的。为了避开这变异,他将试验样品的统计平均值称为“表现型”:“可以把从统计学上得到的类型……简单地称为表现型……某一特定的表现型可能是某种生物学单一性的表现,但是并不一定就必然如此。通过统计学研究在自然界发现的大多数表现型就不是这样!”约翰逊所用的术语以及他的议论清楚地表明他企图取得“纯粹的本质”,从而探求“纯系”。后来的学者发现这种类型学的定义毫无用处并重新将表现型定义为个体的实际性状。

 

虽然这名称是约翰逊提出的,然而遗传型和表现型的现代用法实际上更接近于魏斯曼的种质和体质。

 

约翰逊在新创了“基因”这个词(见第十七章 )之后又把“(类)型”这个词根与之结合起来组成“基因型”这词,其对应部分称为“表现型”。“基因型”又称“遗传型”,指的是由两个配子结合而成的合子的基因组成:“我们用基因型这个词来称呼这基因组成。这个词完全不依赖任何假说;它是事实,不是下面的一种假说,即由受精作用产生的不同合子可以具有不同的性质,即使在十分相似的生活环境下也能形成在表现型上各式各样的个体”(1909165170)。然而从总的来看约翰逊是想把遗传型作为种群或物种的遗传型来考虑(从类型学或模式学的角度考虑)。Woltereck1909)也大致在同一时间采用了另一个不同的术语来表达同一个遗传型在不同的环境条件下可以产生十分不同的表现型这一重要见解。他认为通过遗传所继承的仅仅是“反应规范”(norm of reaction),即对任何环境条件按特定方式作出反应的素质。

 

然而一直到发现(19441953)遗传型(基因型)由DNA组成以及躯体由蛋白质(及其它有机分子)构成后才真正了解遗传型和表现型之间的根本区别。遗传学建立后的早期在这个问题上仍然混淆不清,即使约翰逊也不能免。进化生物学历史上的许多重要论战的根本原因就是因为分辨不清遗传型和表现型,例如融合遗传与突变的实质。实际上充分认清遗传素质(遗传型)和可以观察到的外表(表现型)之间的区别是最终否定软式遗传所必需的。约翰逊本人为否定软式遗传所作出的决定性贡献绝非偶然,虽然这种贡献大大得力于他碰巧选择了一种合适的试验生物。

 

约翰逊选择了一种可以自交的(自交来合性)植物菜豆(Phaseolus vulgaris)。由于这一物种的植物通常都是自交的,所以它们都是高度纯合的。他选用了经过多代自交而产生的19个一植株作为选育的基本母株。在每一个这样的“纯系”中他挑选最大的到最小的菜豆繁育后代。在每个试验组中后代的变异基本相同,和母株菜豆的大小无关。换句话说,在一个纯系中大菜豆和小菜豆的遗传型都相同,而所观察到的差别是对不同环境条件的表现型反应。约翰逊这一试验研究的特点或重要方面是他在测定成千上万个菜豆上的精确性以及对试验结果统计分析的周密性。他的结论是由于栽培条件(肥料,光照、水份等等)不同所引起的菜豆大小不同不能传递给下一代。这一结论是必然的,没有获得性状遗传。因为表现型是遗传型和环境互相作用的结果,所以不能认为它是遗传型的准确象征。

 

约翰逊的纯系试验对生物学产生了极其特别的模棱两可的影响。一方面它有助于削弱当时仍占上风和广为流行的软式遗传的影响,然而遗憾的是这试验又被约翰逊本人及其它学者引用来作为自然选择无效的证据(见第十二章 )。

 

181 有关遗传的各种互相竞争的学说

 

在澄清了遗传型与表现型以及融合遗传等问题之后,下面就可以全面地考虑反对孟德尔遗传能普遍适用的各种原因。当时有不少相互竞争的遗传学说在这一片反对声中起了重要作用。在1900年重新发现孟德尔定律时,这些定律还不可能占有空白领域。因为事实上那时已经有一些其它的遗传学说(特别是有三个主要遗传学说)似乎比孟德尔主义能更好地解释达尔文的渐进进化。

 

高尔敦的祖先遗传(ancestral heredity)学说

 

达尔文的表弟高尔敦(Francis Galton)在1875年之后继续在建立他以前的遗传学说体系(见第十六章 )。在早期的遗传学者中实际上只有高尔敦重视种群方面的遗传变异。和育种者及孟德尔主义者不同,他特别注意数量性状,如身高、肤色等。他发现在某一种群中这些性状的平均值从总体上来说各个世代都相同。平均而言,最高的男人的子女身高要矮于这些男人及其配偶身高的平均值。也就是说,他们的后代“回归”到种群平均值。反之,最矮男人的后代则向上回归到种群平均值。高尔敦的这种推理很迎合常识。他认为每个人从其父亲和母亲分别接受一半遗传素质。将这一相同推理运用于祖代,则每个人从其祖父和祖母分别承袭四分之一的遗传素质,从曾祖父母分别得到八分之一,等等。因此,祖先在遗传上所作的贡献每一世代都减少一半。这就是后来所说的高尔敦祖先遗传定律。

 

高尔敦对遗传现象的解释初一看似乎在连续变异上远比孟德尔分离定律更圆满。赞同达尔文渐进进化概念的达尔文主义者如WeldonPearson等被迫在不连续遗传和连续遗传两者之间作出抉择时便支持高尔敦(虽然高尔敦本人却相信骤变进化;见第十二章)。高尔敦的祖先遗传学说虽然经过Pearson修正仍然有很多缺点,其中之一是它完全是描述性的,并没有实际提供任何说明原因的解释,另一个缺点是它不容任何预测。然而高尔敦最糟糕的错误是他在统计上把遗传型作为一个整体的正确结论搬到个别性状的遗传模式上。虽然高尔敦承认颗粒是遗传现象的物质基础(见第十六章 ),但在他的推理中却把这些颗粒当作好像是融合的。从杂合的双亲(它们又是来自杂合的祖代)产生纯合隐性按高尔敦定律完全无法解释从而使这定律(或学说)遭到一致的断然反对。高尔敦定律对个体和其祖先有可能相似的说法是对的,但不能将之应用于个别遗传因子。但是充分认识这一点却需要相当长的时间,只有在高尔敦定律被所有支持者放弃以后孟德尔主义才有希望被普遍接受。

 

即使Weldon1906年去世以及Pearson和高尔敦转到其它研究领域之后,连续变异的遗传问题仍然有争议。实际上在英国数学家Yule1902234235)的一篇预见性文章中就曾经提出过连续变异可能是由于多个遗传因子共同作用引起的,但是这一见解完全没有被他的同时代人所重视(见下文)。

 

污染学说

 

试图按非孟德尔方式来解释连续变异花费了更长时间。遗传学早期最有才华的实验研究家之一的凯塞尔(WECastle)发现白豚鼠与祖代黑豚鼠杂交后所产生的白豚鼠比从纯系白豚鼠所得到的白豚鼠在四肢处(有时也在其它部位)的黑色较深较重。周此他根据这些发现提出了所谓的污染学说,即在减数分裂时杂合子的白色遗传因子被黑色遗传因子“污染”(反之亦然),所似其后代显示轻微程度的中间性状。这是由一位知名的遗传学家所提出的最后一个“软式遗传”学说。非此即彼二择一性状的这种互相影响当然在一定程度上有助于说明连续变异,因而这一学说深受达尔文主义者欢迎。凯塞尔的污染学说引起了他和摩根及其学生、尤其是穆勒之间的一场学术论战。

 

在一次决定性的回交试验中无法证实他在1919年的预测,凯塞尔便放弃了他的污染学说。他的想法是依据早期孟德尔主义者(尤其是贝特森)的单位性状概念、即每一个性状由单个特殊的遗传因子控制。如果性状改变(如在凯塞尔的杂交试验中),这必定是由于遗传因子发生了改变的结果。多因子学说(见下文)指陈几个基因(如果不是许多基因)可以影响(修饰)一个单独的性状,从而使人们放弃了单位性状学说。

 

细胞质遗传学说

 

凯塞尔的污染学说被否定后还剩下最后一个试图按非孟德尔方式解释连续变异的学说。依照这种学说,连续变异是由特殊的“物种物质”(species substance)所引起,这物质可能存在于细胞质中,与不连续的孟德尔式基因无关。

 

不变的物种物质逐代相传的观念经过相当长的时间才缓慢地被遗传是由位于染色体上的基因控制的学说所代替。从1880年代到1920年代的许多观察研究似乎表明这些观察研究结果能更好地被这样一种设想来说明、即有一类相当稳定不变的、能扩散的物种特异性遗传物质,它们可能存在于细胞质中并和染色体的基因共同存在。按照这一设想,染色体是不连续性状的载体(德弗里和摩根的突变就是例证)而连续变异以及与物种的“真正实质”有关的变异则由细胞质承载。这种观点在胚胎学家中很流行。观察与实验曾一再表明成熟卵的细胞质具有复杂的组织结构并且似乎是早期发育的主要控制中心。近年来的研究也充分证实了这一点。这一事实和茹(Roux)从均等分裂转向接性质分裂有关。只是最近才发现细胞质的这种组织结构是卵还在卵巢中形成时由基因控制的。不管怎样说,自从西斯(His1874)到1916Jacques Loeb,许多生物学家对细胞核究竟在早期发育或物种的实质上是否起作用公开表示怀疑。波弗利本人虽然在细胞核防重要作用方面提供了决定性的证据(见第十七章 ),但对这个问题也继续持保守态度(1903Roux's Archiv16)。他认为物种性状可以区分成能由染色体遗传加以解释的,但是将物种分派到高级分类单位的那些性状的遗传却是无法解释的问题。在1930年代以前许多生物学家将遗传现象分成由细胞核或细胞质分别控制的两类。甚至在欧洲大陆的遗传学家中最正统的达尔文主义者EBaur也对是否能按解释物种性状的同样方式来说明高级分类单位的性状提出疑问。这些性状的变异看来似乎与孟德尔遗传无关。

 

细胞质遗传的支持者拥有某些似乎言之成理的理由。研究高度不等卵裂现象的某些学者(如ConklinGuyer)特别提到胚胎发生早期卵细胞质的明显效应。博物学家注意到摩根所研究的那一类突变,如白眼、黄体色、刚毛脱落、残缺翅等等不仅在普通果蝇(Drosophila melanogaster)中出现,在其它种类的果蝇中也是如此,因而他们声称并没有证据指陈这些区分物种的细微性状属于染色体遗传。绝对染色体遗传的反对者无法理解这么多的可遗传性状怎么可能都存在于这样小的染色体上。Winkler1924)对支持细胞质遗传的论点曾作过很好的总结性评述。

 

特别是植物学家发现了很多现象似乎要求有细胞质遗传才能加以说明。Wettstein1926)建议将位于细胞质中的遗传物质称为“细胞质基因”(Plasmon)以与细胞核中的“基因(组)”(genom)相区别。有不少植物学家(尤其是德国植物学家)发现了细胞质的遗传效应,如柯仑斯(紫茉莉及其它属)、Michaelis(柳叶菜属)、Schwemmle(月见草)、Oehlker(苣苔属)、Wettstein(藓类),等等。在这种背景下Goldschmidt也将他在毒蛾属中的某些发现用细胞质遗传来解释。德国学者之所以强调细胞质显然是1880年代和1890年代德国遗传学研究着重发育现象的延续。现在回过头来看这些细胞质现象的研究未免为时过早、时机还不成熟,因而德国的遗传学研究虽然有不少学者参与,但它对传递遗传学所作的贡献还不加贝特森、Cuenot、凯塞尔或摩根学派,他们有意回避了细胞质遗传问题。

 

细胞质对遗传现象具有广泛的重要独立作用的观点最后以多种不同的方式被否定(Wilson1925)。首先是从理论角度考虑:

 

1)控制细胞核染色物质分裂的极端精确性是细胞质分裂时所无法比拟的。

 

2)父本和母本对后代遗传组成所作的贡献基本相同,这一点已被正反交杂交试验证实,虽然在不少物种中雌配子和雄配子的细胞质含量极不相等。波弗利(1889)也非常出色地证明了这一点,他将某个属的海胆大卵的(除)去(细胞)核断片用另一个属海胆精于授精后所形成的胚胎完全显示父本性状,而真正的杂种胚胎却恰好呈现这两个属之间的中间性状。

 

3)成熟中的雌配子(卵细胞)的减数分裂只影响染色物质,对细胞质并不产生影响。与此成对照的是,发育中的精子细胞质极少,结果父本与母本的细胞质含量相差悬殊,但父本与母本的遗传物质却完全相同。

 

比这些理论上的考虑更重要的是找到了能说明这类看来是例外现象的解释。“延迟孟德尔遗传”(delayed Mendelian inheritance)就是这类例外现象之一。

 

当有大量的卵细胞质时,发育的第一步往往是由卵细胞质中的一些因子控制的,而这些因子当然是母本个体的产物。例如蜗牛外壳纹理的旋转方向是右旋(顺时针方向)还是左旋(逆时针方向)是在第一次卵裂时由卵细胞质决定的。但是后来证明这旋转方向实际上是在受精之前由一个基因作用于卵巢卵来控制,而且至少就对这一问题的经典性研究(Boycott and Diver1923)所采用的试验材料椎实螺(Limnaea Peregra)来说右旋占优势。左旋的母螺被右旋雄螺授精后将产生左旋后代,但是后者继之又产生右旋后代,这是由于显性右族父本基因在卵细胞质形成时的影响所致。遗传学教科书中载有这种延迟孟德尔遗传现象的许多事例,有时可以延续好几代,乍一看似乎是细胞质遗传。

 

被引用来作为细胞质遗传证据的第二类现象是植物细胞中的内含物(如叶绿体以及其它的所谓质体与细胞器)都或多或少不依赖细胞核而传递它们的特征。实际上它们之中有一些有它们本身的遗传物质(DNA),这似乎是和它们的进化起源一道形成的。在某些种类的植物中叶片的花班也是母本遗传的质体特征。动物细胞中的细胞器,例如线粒体,同样也具有本身的DNA。但是这些现象在根本上和遗传的染色体学说并不矛盾。Sonneborn1979)所发现的原生动物(纤毛虫)某些细胞质结构的大量自主性也是如此。

 

一度被认为是细胞质遗传证据的第三类现象是某些组织被微生物感染后在配子形成时又传给配子,Ephrussi1953)在酵母中发现的“小菌落”(petite colonie)现象,Sonneborn在草履虫中发现的“卡巴因子”(Pteer et al1974)、果蝇中的性比因子、家蚁的不育因子等等都属于这一类现象。

 

因此起初被看作是表明细胞质遗传存在的一个又一个现象最终都有了基因-染色体解释。当细胞质通过电子显微镜和相应的化学研究能够被分解成各个组成部分时才最后澄清了细胞质遗传的各种可能性。但是这并不意味着细胞质遗传学现在已到了该结束的时候,细胞质在发育上和在调节基因的活性上都具有重要作用。事实上已有迹象表明细胞质的精细结构比我们现在所知道的具有更大作用。也有可能(如果不是有充分理由相信)这种结构具有物种特异性并和细胞的许多过程有关,Sonneborn的研究确实支持了这种观点。因此过去认为细胞质在遗传上很重要的观点并不是完全错误而被废弃,然而这观点已被大大修正。

 

 

  评论这张
 
阅读(41)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017