注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

杨鸿智-后现代理论医学博客

《后现代医学》、《正反馈医学》、《自体原位器官重构技术》

 
 
 

日志

 
 
关于我

这是一个宣传后现代理论医学的博客.后现代理论医学是以系统理论为指导的新医学.该理论认为,在生命组织中干细胞是决定机体功能状态最基本的因素.通过调节机体内环境和为干细胞提供再生所需要的物质和能量,就可以使干细胞在患者体内原位再生,实现器官重构,使器质性病变得到治疗.现在,已经在北京医药信息学会内成立了后现代理论医学专业委员会,杨鸿智是主任委员.

网易考拉推荐

(7)生物信息学的发展现状和展望  

2013-06-23 21:42:17|  分类: 干细胞病 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

7)生物信息学的发展现状和展望

http://www.bioinfo.org.cn/biology/biodevelope.htm

 

一、 什么是生物信息学:

 

1 人类基因组计划与生物信息学

 

人类基因组计划(Human Genome Project,简称HGP)是美国科学家在1985年率先提出的,其目的在于阐明人类基因组DNA3×109核苷酸序列,破译人类全部遗传信息,HGP1990年正式启动。随着HGP产生的数据爆炸,一门新兴学科----生物信息学应运而生。生物信息学是以计算机为主要工具,开发各种软件,对日益增长的DNA和蛋白质的序列和结构等相关信息进行收集、储存、发行、提取、加工、分析和研究,同时建立理论模型,指导实验研究,它由数据库、计算机网络和应用软件三大部分构成,在基因组计划中发挥不可替代的作用。

 

2 什么是生物信息学

 

美国人类基因组计划中给基因组信息学的定义:它是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和解释的所有方面。该定义包含两方面的内容,一方面是发展强大有效的信息分析工具,构建适合于基因组研究的数据库,用于搜索、管理、使用人类基因组和模式生物基因组的巨量信息;另一方面是配合实验研究,确定约30亿个碱基对的人类基因组完整核苷酸顺序,找出人类全部约10万个基因在染色体上的位置以及包括基因在内的各种DNA片段的功能,即"读懂"人类基因。

 

随着后基因组时代的到来,基因组学的研究从结构基因组学过渡到功能基因组学,即从"是什么"过渡到"为什么"的研究。

 

生物信息学(bioinformatics)是生物学与计算机科学以及应用数学等学科相互交叉而形成的一门新兴学科。它通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地定义为:将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科。

 

二、 生物信息学的重要研究课题

 

1. 大规模基因组测序中的信息分析

2. 新基因和新SNP的发现与鉴定

3.非编码区信息结构分析

4.遗传密码的起源和生物进化

5.完整基因组的比较研究

6.大规模基因功能表达谱的分析

7.生物大分子的结构模拟与药物设计

8.生物信息学分析方法的研究

9.建立国家生物医学数据库与服务系统

10.应用与发展研究

 

三、生物信息学的产生与发展

 

生物信息学(bioinformatics)80年代未随着人类基因组计划(Human genome project)的启动而兴起的一门新的交叉学科。它涉及生物学、数学、计算机科学和工程学,依赖于计算机科学、工程学和应用数学的基础,依赖于生物实验和衍生数据的大量储存。生物信息学不只是一门为了建立、更新生物数据库及获取生物数据而联合使用多项计算机科学技术的应用性学科,也不仅仅是只限于生物信息学这一概念的理论性学科。事实上,它是一门理论概念与实践应用并重的学科。

 

生物信息学的产生发展仅有10年左右的时间---bioinformatics这一名词在1991年左右才在文献中出现,还只是出现在电子出版物的文本中。事实上,生物信息学的存在已有30多年,只不过最初常被称为基因组信息学。

 

基因组信息是生物信息中最基本的表达形式,并且基因组信息量在生物信息量中占有极大的比重,但是,生物信息并不仅限于基因组信息,生物信息学也不等于是基因组信息学。广义的说,生物信息不仅包括基因组信息,如基因的DNA序列、染色体定位,也包括基因产物(蛋白质或RNA)的结构和功能及各生物种间的进化关系等其他信息资源。生物信息学既涉及基因组信息的获取、处理、贮存、传递、分析和解释,又涉及蛋白质组信息学如蛋白质的序列、结构、功能及定位分类、蛋白质连锁图、蛋白质数据库的建立、相关分析软件的开发和应用等方面,还涉及基因与蛋白质的关系如蛋白质编码基因的识别及算法研究、蛋白质结构、功能预测等,另外,新药研制、生物进化也是生物信息学研究的热点。1995年,在美国人类基因组计划(HGP)第一个五年总结报告中给出了一个较为完整的生物信息学的定义:生物信息学是包含生物信息的获取、处理、贮存、分发、分析和解释的所有方面的一门学科,它综合运用数学、计算机科学和生物学的各种工具进行研究,目的在于了解大量的生物学意义。

 

四、生物信息学发展的必要条件----人才和资金

 

生物信息学的发展离不开资金和人才培养,而人才培养是当前首要的任务。斯坦福大学的基因学教授大维.波特指出"我们需要既懂计算机又懂生物学的人才,就象以前我们需要既懂化学又懂生物学的人才一样"。目前,制药工业、农业、生物科技公司等均需求这种跨学科人才。现在关键在于有关学科间协作和加速培养这批在数学、物理、信息科学、计算机科学及生物学方面均有造诣的生物信息学人才。

 

另外,资金也是一个重要因素。事实上,对生物信息学软件、硬件的投资并非小数目,不是有几台上网的电脑就可以了,建立一套初具规模的生物信息学服务系统,至少需要投资50万美金。

 

五、生物信息学研究可能面临的困难:

 

     府投资不足

 

虽然国际上生物信息学研究在各发达国家中比较受重视,但仍有不少研究机构抱怨政府资金投入不够。最近美国许多研究院纷纷申请要求政府加大生物信息学工具与数据库方面的投入,而且欧洲、日本、澳大利亚在这些领域也存在着资金困扰问题,欧洲生物信息学研究所(EBI)和欧洲基金会生命科学中心去年都遇到了麻烦。目前虽然危机已经暂时渡过,但未来几年EBI数据库和其它基础结构仍将受到资金短缺的困扰,一致有人发出了"免费数据服务还能维持多久"的疑问。

 

2.来自商业机构的竞争    

 

基因组研究潜在的巨大商业利润使得国际上一批大型制药公司和化学公司向该领域大规模的进军。世界最大制药集团之一的Giba GeigySandoz合资建立的Novartis公司投资2.5亿美元建立基因组研究所;Glaxo-Wellcome在基因组研究领域投入4700万美元,将研究人员增加一倍;Smith Kline公司花125亿美元扩展人基因组的顺序,将生物信息学的研究人员从2人增加至70人,并将该公司药物开发项目中的25%建立在基因组学之上。这一方面给生物信息学发展注入了生机,另一方面对那些政府支持的不以赢利为目的的研究机构造成了巨大的压力,学术部门的资金投入远远不及工业部门,其负面冲击力不可忽视。毕竟经济利益的盲目追求会导致基因组研究的片面性,生物信息学长路漫漫,保护这些学术部门的良好发展非常有必要。

 

3.专业人才匮乏    

 

目前该领域缺乏懂得如何利用计算机技术处理大量生物数据的生物学家,不少生物学家只是将计算机用来打字或作为图纸的替代品。甚至出现了这样有趣的现象:制药业、工业、农业、生物技术研究团体经常在学术机构大肆搜查那些"可疑人",更有甚者他们彼此间互挖"墙角"。虽然对于人才的渴求与日俱增,但全世界也仅有20多个专业人才培训中心,而且这些中心本身也处在恶性循环中,那些经培训后的人才往往由于高薪诱惑而投身应用工业部门,导致培训教育人员越来越少,出现"断层"现象。

 

六、生物信息学的发展展望

 

《第三次技术革命》写到:"一场与工业革命和以计算机为基础的革命有相同影响力的变化正在开始。下一个伟大时代将是基因组革命时代,它现在处于初期阶段。"可见基因组研究乃至整个生物信息学的发展对今后人类社会将产生的深远影响。

 

信息学的商业价值十分显著。国外很多大学,研究机构,软件公司甚至政府机构纷纷成立各种生物信息机构,建立自立的生物信息集成系统,研制这方面的软件,重金招聘人才,期望从中获取更多的生物信息和数据加以研究和利用,缩短药物开发周期,抢注基因专利,获取更大利润。我国如不加大资金投入力度,将来可能会花更多的钱去购买别人的软件,使用专利基因或购买新的药物。所幸,我国也开始重视这一学科:南、北方人类基因组中心的相继建成,北大生物城的破土动工等,标志着我国对生物信息学的重视。我们有理由相信,我国的生物信息学在21世纪会有巨大的飞跃。

 

作为计算机科学和数学应用于分子生物学而形成的交叉学科,生物信息学已经成为基因组研究中强有力的必不可少的研究手段。在我国,生物信息学随着人类基因组研究的展开才刚刚起步,但已显露出蓬勃发展的势头。许多科研单位已经开始或准备开始从事这方面的研究工作。北京大学研究建立起一个EMBL的镜像数据库,并提供数据检索服务。在复旦大学遗传学研究所,为克隆新基因而建立的一整套生物信息系统也已初具规模。中科院上海生化所、生物物理等在结构生物学和基因预测研究方面也有相当的基础,中科院计算所作为我国计算机科学的顶尖机构,利用自身优势,也开始在生物信息方面投入大量的人力物力,从事相关的研究。

 

生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将"有用"新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。

 

 

生物信息学发展与应用

http://course.fafu.edu.cn/bingdusuo/course/biosformatics/apply.htm

 

生物信息学(bioinformatics)是生物学与计算机科学以及应用数学等学科相互交叉而形成的一门新兴学科。它通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地定义为:将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科。现代分子生物学的发展,特别是人基因组计划的实施,使生物学家所面对的数据不再是实验记录本上或文献上的几行简单数字,而是公共数据库中数以千兆计的记录。在推动生物信息学发展的各种动力中,人类基因组计划和生物医药工业是其中的两个主要力量。

 

HGP相关的生物信息学研究

 

HGP目的之一,就是找到人类基因组中的所有基因。除功能克隆和定位克隆策略之外,生物信息学为分子生物学家提供了一条寻找和研究新基因的新思路,即从高度自动化的实验出发,经过数据的获取与处理、序列片段的拼接、可能基因的寻找、基因功能的预测一直到基因的分子进化研究。这个过程的每一个环节,都是生物信息学研究的重要内容。

 

高度自动化的实验数据的获得、加工和整理如何将实验室中得到的生物学信息转化为计算机能够处理的数字信息,是生物信息学的一个重要课题。这种转化大量地体现在各种自动化分子生物学仪器应用上,如DNA测序仪,PCR仪等。这类仪器将实验所得的物理化学信号转化为数字信息,并对其作简单分析,再将分析结果用于实验条件的控制,完成高度自动化的实验过程。从事大规模EST测序和DNA物理图谱构建的实验室都已建立起高度自动化的机器人系统来完成大部分的实验工作。

 

伴随着实验过程的高度自动化甚至工厂化,从事大规模分子生物学项目的实验室,每天需要存储的数据可以轻易地超过几千兆字节。这样大的数据量必须用专门的实验室数据管理系统进行处理,以自动完成包括实验进程和数据的记录,常规数据分析,数据质量检测和问题的自动查找,常规的数据说明和数据输人数据库在内的各项工作。由于不同实验室需处理的数据类型各不相同,目前各个实验室都是各自开发自己的系统,还没有成熟的可用于不同实验室的分子生物学数据管理系统。但随着测序逐渐成为实验室的常规工作,对这种系统的需求会越来越大,此类系统的发展将成为大势所趋。

 

序列片段的拼接

 

目前DNA自动测序仪每个反应只能测序500bP左右。如何将这些序列片段拼接成完整的DNA顺序就成为接下来的一个重要工作。传统的测序技术通常将克隆进行亚克隆并对亚克隆进行排序。这些工作需要大量的人力物力。现在生物信息学提供了自动而高速地拼接序列的算法,即根据Lander-Waterman模型利用鸟枪法进行测序,再将大量随机测序的片段用计算机进行自动拼接。这种技术不仅避免了亚克隆排序所需的大量繁琐的工作,还使序列具有一定的冗余性以保证序列中每个碱基的准确性。序列拼接算法的进一步发展,需要在以下方面进行改进:1将已知的基因组知识应用与拼接算法,以进一步提高拼接真核基因组的有效性。2自动处理自动测序造成的差错,特别是对差错倾向的EST顺序更是如此。

 

基因区域的预测

 

在完成序列的拼接后,我们得到的是很长的DNA序列,甚至可能是整个基因组的序列。这些序列中包含着许多未知的基因,下一步就是将基因区域从这些长序列中找出来。

 

所谓基因区域的预测,一般是指预测DNA顺序中编码蛋白质的部分,即外显子部分。不过目前基因区域的预测已从单纯外显子预测发展到整个基因结构的预测。这些预测综合各种外显子预测的算法和人们对基因结构信号(如TATA box和加尾信号)的认识,预测出可能的完整基因。

 

基因功能预测

 

序列同源比较;同源比较的发展方向;寻找蛋白质家族保守顺序;蛋白质结构的预测。

 

分子进化的研究

 

通过上述种种方法我们可以预测出一个新基因的可能具有的功能。然而预测新基因只是生物信息学研究的一个方面,这门学科的根本目标是探究隐藏在生物数据后面的生物学知识。对于基因组研究来说,一个重要的研究方向就是分子序列的进化。通过比较不同生物基因组中各种结构成分的异同,可以大大加深我们对生物进化的认识。这种研究已逐步形成一个称为比较基因组学的新学科。从各种基因结构与成分的进化,密码子使用的进化,到进化树的构建,各种理论上和实验上的课题都等待生物信息学家的研究。

 

生物信息学的发展展望

 

作为计算机科学和数学应用于分子生物学而形成的交叉学科,生物信息学已经成为基因组研究中强有力的必不可少的研究手段。

 

在我国,生物信息学随着人类基因组研究的展开才刚刚起步,但已显露出蓬勃发展的势头。许多科研单位已经开始或准备开始从事这方面的研究工作。北京大学研究建立起一个EMBL的镜像数据库(即完整地将EMBL的数据库移植过来),并提供部分的检索服务。在复旦大学遗传学研究所,为克隆新基因而建立的一整套生物信息系统也已初具规模。中科院上海生化所、生物物理所等单位在结构生物学和基因预测研究方面也有相当的基础。

 

生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将“有用”新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。

 

在克隆新基因的思路方面,我们觉得我国不应该照搬国外克隆新基因所用的方法,而应该走生物信息学和定位克隆相结合的道路。具体地说就是一方面进行各种遗传疾病家系的采集,从家系分析入手,寻找致病基因在染色体上的位置,然后对这个区域进行测序,再利用生物信息学的手段预测候选基因和它的功能并用实验加以证实;另一方面直接从现有公共数据库中的EST出发,用生物信息学的方法寻找可能有研究价值的新基因,并用实验方法来研究证实。我们认为这种双管齐下克隆新基因的方法可能更适合我国人类基因组研究在财力、物力和研究人才资源等方面的客观条件。

 

所以与其与美国等发达国家拼资金拼技术,不如充分利用我国丰富的家系资源和公共中的免费资源,将有限的资金用在具有明确科学、经济和社会效益的研究方向。

 

在生物信息系统的构建方面,应该避免重复投资。国家应当集中创建一两个具有一定规模的生物信息中心,建立面向全国的生物学数据库检索和数据分析系统。相信在HGP和即将开始的中国人基因组研究计划中,生物信息学将发挥越来越大的作用,并推动生物学进入一个全新的境界。

 

 

  评论这张
 
阅读(156)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017