注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

杨鸿智-后现代理论医学博客

《后现代医学》、《正反馈医学》、《自体原位器官重构技术》

 
 
 

日志

 
 
关于我

这是一个宣传后现代理论医学的博客.后现代理论医学是以系统理论为指导的新医学.该理论认为,在生命组织中干细胞是决定机体功能状态最基本的因素.通过调节机体内环境和为干细胞提供再生所需要的物质和能量,就可以使干细胞在患者体内原位再生,实现器官重构,使器质性病变得到治疗.现在,已经在北京医药信息学会内成立了后现代理论医学专业委员会,杨鸿智是主任委员.

网易考拉推荐

(2)科学之光  

2013-05-09 19:06:01|  分类: 干细胞病 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

2)科学之光

 

按爱因斯坦的心理气质而言,如果他出生在文艺复兴时期,历史或许把他造就成为一个杰出的艺术家,但在19世纪末的德国,一种以科学发明去探索未知世界的热潮正在兴起。各种科学发明以前所未有的声、光、电、化迅速改变着人们的感官世界,各种技术上的新鲜玩意给新一代人带来无穷的趣味,并吸引着他们兴趣,激起他们的求知欲。

 

科学之光普照着大地,也照亮了小爱因斯坦成长的道路。爱因斯坦上学前的一天,他生病了,本来沉静的孩子更像一只温顺的小猫,静静地蜷伏在家里,一动也不动。父亲拿来一个小罗盘给儿子解闷。爱因斯坦的小手捧着罗盘,只见罗盘中间那根针在轻轻地抖动,指着北边。他把盘子转过去,那根针并不听他的话,照旧指向北边。爱因斯坦又把罗盘捧在胸前,扭转身子,再猛扭过去,可那根针又回来了,还是指向北边。不管他怎样转动身子,那根细细的红色磁针就是顽强地指着北边。小爱因斯坦忘掉了身上的病痛,只剩下一脸的惊讶和困惑:是什么东西使它总是指向北边呢?这根针的四周什么也没有,是什么力量推着它指向北边呢?

 

爱因斯坦67岁时仍然为童年时的“罗盘经历”感慨万千。

 

他在《自述》中说:

 

“当我还是一个四、五岁的小孩,在父亲给我看一个罗盘的时候,就经历过这种惊奇。这只指南针以如此确定的方式行动,根本不符合那些在无意识的概念世界中能找到位置的事物的本性的(同直接‘接触’有关的作用)。我现在还记得,至少相信我还记得,这种经验给我一个深刻而持久的印象。我想一定有什么东西深深地隐藏在事情后面。凡是人从小就看到的事情,不会引起这种反应;他对于物体下落,对于风和雨,对于月亮或者对于月亮会不会掉下来,对于生物和非生物之间的区别等都不感到惊奇。”

 

显然,人们经验认为“空虚”的空间存在一种什么东西,一种什么力量,迫使着物体朝特定的方向运动。这件偶然小事虽微乎其微,并发生在爱因斯坦成为科学家之前很久的时间里,但这次奇特的经历却对他后来的科学思考与研究极为重要。后来,“场”的特性和空间问题是那样强劲地吸引着这位物理学家。在广义相对论中,爱因斯坦终于天才地解决了这些儿童时代就萌发出来的困惑。不过在当时,它们还只是以朴质的本来面貌显现在他的眼前。

 

小小的罗盘,里面那根按照一定规律行动的磁针,唤起了这位未来的科学巨匠的好奇心——探索事物原委的好奇心。而这种神圣的好奇心,正是萌生科学的幼苗。

 

1953年3月14日,爱因斯坦在74岁生日宴会之前,举行了一个简短的记者招待会。会上,他收到一份书面的问题单。单子上第一个问题就是:“据说你在5岁时由于一只指南针,12岁时由于一本欧几里得几何学而受到决定性的影响。

 

这些东西对你一生的工作果真有过影响吗?”

 

爱因斯坦的回答是:“我自己是这样想的。我相信这些外界的影响对我的发展确是有重大影响的。”

 

爱因斯坦接下来的回答似乎更饶有趣味:“但是人很少洞察到他自己内心所发生的事情。当一只小狗第一次看到指南针时,它可能没有类似的影响,对许多小孩子也是如此。事实上决定一个人的特殊反应的究竟是什么呢?在这个问题上,人们可以设想各种或多或少能够说得通的理论,但是决不会找到真正的答案。”

 

的确,一个儿童的一次偶然经历和日后伟大的科学发现之间,大概怎么推论,也难以找出让人心服的必然性联系。希特勒还是一个孩子时,大约总有舞刀弄枪的游戏活动,但由此推出他最终成为战争狂人的渊源关系,终究有些可笑。所以,尽管爱因斯坦儿童时代“罗盘经历”中感受到的困惑与日后相对论的研究对象有共同性,但这种共同性毕竟有着性质上的差异:前者无非是一个孩子对自然现象的惊奇感;后者则是对宇宙规律的有意探索。倘若爱因斯坦没有成为物理学大师,那小小的“罗盘经历”也就失去任何意义,更不会为人们津津乐道。只是就小爱因斯坦的好奇心来说,他确是一个早熟的、聪慧的孩子。当同年龄的孩子们还在盲目认可一切可感知的对象时,爱因斯坦却感受到一种无法看见的力量,我想,这很可能仍与音乐的无形魅力有关系。

 

真正促使爱因斯坦对超感官世界发生浓厚兴趣的是数学。音乐已给了爱因斯坦一个和谐美丽的图景,如今,数学又将给他证实这个图景。二者结合起来,就为爱因斯坦的精神发展奠定下第一块坚实的基石。对理想世界的情感依恋与理智认同便是爱因斯坦后来执着、自负、倔强性格的内涵。

 

爱因斯坦在《自述》中说:

 

“在12岁时,我经历了另一种性质完全不同的惊奇:这是在一个学年开始时,当我得到一本关于欧几里得平面几何的小书时所经历的。这本书里有许多断言,比如,三角形的三个高交于一点,它们本身虽然并不是显而易见的,但是可以很可靠地加以证明,以至任何怀疑似乎都不可能。这种明晰性和可靠性给我造成了一种难以形容的印象。至于不用证明就得承认公理,这件事并没有使我不安。如果我能依据一些其有效性在我看来是无容置疑的命题来加以证明,那么我就完全心满意足了。比如,我记得,在这本神圣的几何学小书到我手中以前,有位叔叔①曾经把毕达哥拉斯定理告诉了我。经过艰巨的努力以后,我根据三角形的相似性成功地‘证明了’这条定理;在这样做的时候,我觉得,直角三角形各个边的关系‘显然’完全决定于它的一个锐角。在我看来,只有在类似方式中不是表现得很‘显然’的东西,才需要证明。而且,几何学研究的对象,同那些‘能被看到和摸到的’感官知觉的对象似乎是同一类型的东西。这种原始观念的根源,自然是由于不知不觉存在着几何概念同直接经验对象的关系,这种原始观念大概也就是康德提出那个著名的关于‘先验综合判断’可能性问题的根据。”   

 

   赫尔曼?爱因斯坦的弟弟雅各布?爱因斯坦。

 

这段颇长的自述是我们理解爱因斯坦科学思想形成发展的重要资料。一个12岁的孩子,在不可思议的感受中迷上了数学,而且初次领略了一个古老又永恒的哲学命题:思维与存在的关系。一个直角三角形,两条直角边的平方相加等于斜边的平方。这个平方并不是显而易见的,可是却能证明。人的思维能证明不是显而易见的事情,这是多么奇妙!那么量一量行不行呢?我们现在无法知道小爱因斯坦当时是否作过这样的设想。从上边引证的自述来看,爱因斯坦直觉地感到:不行。一千次、一万次量度不能代替一次证明,一次证明却能代替一千次、一万次量度。几何学给爱因斯坦带来的思维奇妙性,使他来不及按部就班,竟一口气把《圣明几何学小书》学到最后一页。

 

在爱因斯坦步入自然科学领域的最初几步,有两个人是很重要的,虽然很难说他们两人在思想上对爱因斯坦有什么大的影响,但正是他们,把打开自然科学殿堂大门的第一把钥匙递给了爱因斯坦。这两个人是爱因斯坦的叔叔雅各布?爱因斯坦和来自俄国的大学生塔尔梅。

 

雅各布?爱因斯坦是个很有事业心并且精力充沛的人,是一个工程师,也和赫尔曼?爱因斯坦一样爱好数学,就是他动员赫尔曼?爱因斯坦一家移居慕尼黑。在工厂里,他管技术;在家里,他则是小爱因斯坦入学前的数学启蒙者。爱因斯坦上学后,雅各布叔叔常常给小爱因斯坦出些数学题让他解答。每当正确解答后,爱因斯坦就特别高兴。

 

1888年10月,爱因斯坦从慕尼黑国民学校进入路易波尔德中学学习,一直读到15岁。这期间,来自俄国的大学生塔尔梅成为爱因斯坦家里的常客。塔尔梅每星期四到爱因斯坦家来吃晚饭,这是慕尼黑犹太人帮助外国来的穷苦犹太学生的慈善行动。塔尔梅是学医的,但对各种自然科学知识以及哲学均抱有兴趣。他对小爱因斯坦的超常求知欲及能力很吃惊。那本让爱因斯坦终身难忘的“神圣的几何小书”便是塔尔梅送给爱因斯坦的。一开始,塔尔梅总是和爱因斯坦谈论数学问题,越谈就越引起爱因斯坦对数学的浓厚兴趣。对学校枯燥教学方式厌倦的爱因斯坦干脆自学起微积分,他提出的数学问题常弄得中学数学老师张口结舌,不知如何回答。

 

尽管爱因斯坦的数学成绩永远第一,但老师并不喜欢他。

 

一次,一个老师公开对他说:“如果你不在我的班上,我会愉快得多。”爱因斯坦不解地回答:“我并没有做什么错事呀!”老师回答说:“对,确是这样。可你老在后排笑着,这就亵渎了教师需要在班级中得到的尊敬感。”

 

爱因斯坦当然没有任何过错,他的老师的抱怨也可理解。爱因斯坦超常的数学能力确实让一个普通的中学教师感到难堪和无法言说的心理压力。

 

和这位教师不太大度的心理相反,塔尔梅虽不久后也不是爱因斯坦数学上的对手了,但他依然热情地为爱因斯坦介绍当时流行的种种自然科学书籍和康德的哲学著作,特别是布赫纳的《力和物质》、伯恩斯坦的《自然科学通俗读本》,给爱因斯坦留下极深的印象。在伟大的科学家们的生涯中,人们发现:他们往往在年幼时期由于偶然的机会接触到一部著作,从而对他们的命运产生重大影响。爱因斯坦也不例外,他在《自述》中说:

 

“在12—16岁的时候,我熟悉了基础数学,包括微积分原理。这时,我幸运地接触到一些书,它们在逻辑严密性方面并不太严格,但是能够简单明了地突出基本思想。总的说来,这个学习确实是令人神往的;它给我的印象之深并不亚于初等几何,好几次达到了顶点——解析几何的基本思想,无穷级数,微分和积分概念。我还幸运地从一部卓越的通俗读物中知道了整个自然科学领域里的主要成果和方法,这部著作①几乎完全局限于定性的叙述,这是一部我聚精会神地阅读了的著作。当我17岁那年作为学数学和物理学的学生进入苏黎世工业大学时,我已经学过一些理论物理学了。”

 

   恩斯坦的《自然科学通俗读本》是一部有五、六卷的著作。

 

蓬勃发展的自然科学为年轻的爱因斯坦展现出自然界的神奇和规律,童年时代由音乐孕育出来的和谐美景如今又与宇宙、自然的和谐图景产生了谐振。相比之下,音乐的和谐只能感受,而宇宙、大自然的和谐却可以通过人的思维去研究、把握,并用数学方式表现出来,这一种饱含人类思维结晶的和谐图景,并不是简单的感觉对象,而是高级的理性活动与宇宙、大自然的沟通,是人类精神的杰出代表与宇宙、大自然对话的成果。由此,爱因斯坦那超凡的独立人格在理论物理学中获得了深刻的文化内涵,他献身于科学的远大抱负也就从一开始便打上了理想人格的印记。不弄清这一点,我们就很难理解爱因斯坦为什么在成为一代物理学大师的时候又同时成为文明社会楷模。

 

罗盘、几何、微积分、自然规律,一步一个阶梯,一步一个坚实的脚印,爱因斯坦扬起了科学远征的船帆,和实验物理学家不同,数学,始终是爱因斯坦的主要工具。

 

爱因斯坦于1915年完成的广义相对论,正是数学与自然科学之间相互有效结合的光辉范例。爱因斯坦所提出的物理问题,迫使某些数学方法必须加以完善。因而,促进了数学的发展,反过来又推动了物理学研究的进一步发展。1915年年底,爱因斯坦在广义相对论中阐明了引力的几何学理论,这是自然科学史上最伟大的理论成就之一。1955年,物理学家玻恩在一次报告中评价道:“对于广义相对论的提出,我过去和现在都认为是人类认识大自然的最伟大的成果,它把哲学的深奥、物理学的直观和数学的技艺令人惊叹地结合在一起。”

 

由于广义相对论的实验基础不够广泛,它主要建立在一种数学式的推理之上。所以,广义相对论刚问世时,许多物理学家都视之为拼拼凑凑的数学游戏,不屑一顾。为了验证广义相对论的理论,爱因斯坦指出了三个可资验证的“效应”,并用天文观测手段,先后一一验证了这三个效应。于是,数学物理学家推崇为内部和谐、结论正确的新引力理论从而也得到了验证。

 

第一个效应是水星近日点附加的进动。离太阳最近的水星,每绕太阳公转一周,它离太阳最近那一点的位置就有些改变,这就是所谓水星近日点的进动。这是法国天文学家勒维里埃很早发现的一种现象。经观测,每100年进动5600秒,考虑金星对水星的吸引以及其他种种因素,可以解释5557秒,余下的43秒,却无法解释。人们说这是飘浮在牛顿的引力理论上空的一朵乌云。根据广义相对论理论,爱因斯坦否定了半个世纪以来许多天文学家的假设,他们认为存在一颗名叫“火神星”的行星,它就是水星近日点余下43秒进动的神秘原因。建立在牛顿万有引力理论上的如此方法,曾精确有效地找到海王星,这次却怎么也不找不到“火神星”。爱因斯坦的解释是根本不存在什么“火神星”,只是因为太阳的存在引起了空间结构的改变,也因为牛顿的引力理论不够精确,用到水星轨道的计算上发生了误差,这才引起了一场漫长的误会。爱因斯坦在全新解释的基础上,以富于创造性的引力场方程,精确算出了水星轨道的正确数值,并且与观测到的数值完全一致,这个效应验证成为爱因斯坦学说的一根牢固的支柱,新的引力理论诞生了,视广义相对论为数学游戏的攻击开始退缩了。

 

检验相对性引力学说的第二个效应,是太阳引力场中的光线的弯曲。恒星发出的光线在太阳近旁掠过时稍有弯曲。这是一种日全蚀时通过照像刚刚能观测到的效应。早在1911年,爱因斯坦就在理论上预言这一现象,当时算出的偏转角只有1.7秒的一半0.83秒。柏林的天文学家弗劳因德利希决定验证爱因斯坦的预言。1914年8月,在俄国的克里米亚半岛有日全蚀。不巧,弗劳因德利希率领的观测队刚到俄国,第一次世界大战就爆发了。他们被抓起来,直到交换战俘时才被遣送回德国。这个戏剧性的事故使爱因斯坦有了修正计算错误的时间和机遇。1915年年底,爱因斯坦重新算出了光线偏转角为1.7秒(弧度)。大战结束后不久,英国的日全蚀观测队证实了爱因斯坦计算出的理论值。

 

验证引力新理论的第三个效应,是相对论红移。也就是:邻近星体发出的光谱线与地球上相应方式(由同类分子)产生的光谱线相比,谱线移向红端,亦即向长波端移动。其原因在于,强引力作用使得发射出的光的振动频率减少了,波长就相应地增大。天文学家在天狼星伴星中,首先验证了相对论红移。天狼星伴星与白矮星相似,是一颗密度很大的星体。观测值大凡都与爱因斯坦的计算值相靠近。在同一时期内,有人还通过地球引力场中的穆斯鲍尔效应,验证了r量子频率改变这一相对性红移。观测值与理论值完全一致。

 

几何、数学,曾经是爱因斯坦走进科学殿堂的敲门砖,如今,在建立新的物理学大厦的艰难过程中,爱因斯坦在实验手段远远落后于自己物理学思想的情况下,就更加钟爱数学了。1915年,在一封信中,他说,“目前,我只是全心扑在引力问题上,我现在相信,依靠这里的一位友好的数学家的帮助,我将制服这些困难。但有一点是肯定的,在我整个一生中,我工作得都远不够努力,我已变得非常尊重数学,在此以前,我简单的头脑把数学中精妙的部分当作纯粹的奢侈,与这个问题相比,最初的相对论只是儿戏而已。”

 

爱因斯坦对数学的“尊重”和热情包含着无尽的启示。爱因斯坦在音乐中体悟到的和谐,在自然、宇宙中发现的和谐,又和数学中的和谐融为一个完满的整体。在广义相对论研究阶段,他已在很大程度上把理论物理学数学化。1930年,在《物理学中的空间、以太和场的问题》一文中,爱因斯坦对此作了详细的说明:“相对论是说明理论科学在现代发展的基本特征的一个良好的例子。初始的假说变得愈来愈抽象,离经验愈来愈远。另一方面,它更接近一切科学的伟大目标,即要从尽可能少的假说或者公理出发,通过逻辑的演绎,概括尽可能多的经验事实,同时,从公理引向经验事实或者可证实的结论的思路也就愈来愈长,愈来愈微妙。理论科学家在他探索理论时,就不得不愈来愈听从纯粹数学的、形式的考虑,因为实验家的物理经验不能把他提高到最抽象的领域中去。适用于科学幼年时代的以归纳为主的方法,正在让位给探索性的演绎法。这样一种理论结构,在它能导出那些可以同经验作比较的结论之前,需要加以非常彻底的精心推敲。在这里,所观察到的事实无疑地也还是最高的裁决者;但是,公理同它们的可证实的结论被一条很宽的鸿沟分隔开来,在没有通过极其辛勤时艰巨的思考把这两者连接起来以前,它不能作出裁决。理论家在着手这项十分艰巨的工作时,应当清醒地意识到,他的努力也许只会使他的理论注定要受到致命的打击。对于承担这种劳动的理论家,不应当吹毛求疵地说他是‘异想天开’;相反,应当允许他有权去自由发挥他的幻想,因为除此以外就没有别的道路可以达到目的。他的幻想并不是无聊的白日做梦,而是为求得逻辑上最简单的可能性及其结论的探索。为了使听众或读者更愿来注意地听取下面一连串的想法,就需要作这样的恳求;就是这条思路,它把我们从狭义相对论引导到广义相对论,从而再引导到它最近的一个分支,即统一场论。”

 

反对爱因斯坦广义相对论的物理学家们称此为:理论家的天堂,实验家的地狱。这种怨言虽然道出了验证广义相对论的实验难做的实情,但它实在不懂得数学的美妙之处。数学家、哲学家罗素有一段精妙的论述,倒是揭示出爱因斯坦“尊重”数学的原由。罗素说:

 

“数学,如果正确地看它,则具有……至高无上的美——正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种真实的喜悦的精神,一种精神上的亢奋,一种觉得高于人的意识——这些是至善至美的标准,能够在诗里得到,也能够在数学里得到。”显然,深信宇宙和谐的爱因斯坦以简明和谐的数学形式推论新的引力理论实在是具有一种美学上的内在必然性。1983年诺贝尔物理学奖获得者昌德拉塞卡说得更清楚:爱因斯坦是“通过定性讨论一个与对于数学的优美和简单的切实感相结合的物理世界,得到了他的场方程。”

 

事实正是这样。从1909年到1912年,当爱因斯坦在苏黎世和布拉格讲授理论物理学时,他就不断思考如何为新的引力理论寻找一种合适的数学语言。这时,数学家明可夫斯基关于狭义相对论形式基础的分析对爱因斯坦有很大启发。当然,最关键的一步又是他的好朋友,数学家格罗斯曼帮助解决的。爱因斯坦后来回忆道:“我头脑中带着这个问题于1912年去寻找我的老同学马尔塞耳?格罗斯曼,那时他是苏黎世工业大学的数学教授。这立即引起他的兴趣,虽然作为一个纯数学家他对物理学抱有一些怀疑的态度。他查阅了文献并且很快发现,上面所提的数学问题早已由黎曼、里奇和勒维契——维塔解决了。全部发展是同高斯的曲面理论有关的,在这理论中第一次系统地使用了广义坐标系。在格罗斯曼的热情支持下,爱因斯坦把黎曼张量运算引入了物理学,把平直空间的张量运算推广到弯曲的黎曼空间,建立了引力的度规场理论。1913年,他们在德国《数学与物理学期刊》上共同发表了《广义相对论和引力纲要》,在肯定时空度规依赖于引力场的前提下,找到了一个引力场方程。从美学上看,这个方程有着和谐、简单的美学内涵,但还缺少对称之美——不满足广义协变性要求。又经过一年多的探索,爱因斯坦终于找到了满足广义协变要求的场方程,新方程终于达到对称美的标准。

 

我们可以用美国数学家、数学史家、数学教育家M?克莱因的话结束这一小节:

 

“数学的另外一个基本作用(的确,这一点在现代特别突出),那就是提供自然现象的合理结构。数学的概念、方法和结论是物理学的基础。这些学科的成就大小取决于它们与数学结合的程度。数学已经给互不关联的事实的干枯骨架注入了生命,使其成了有联系的有机体,并且还将一系列彼此脱节的观察研究纳入科学的实体之中。”

 

 

  评论这张
 
阅读(72)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017