注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

杨鸿智-后现代理论医学博客

《后现代医学》、《正反馈医学》、《自体原位器官重构技术》

 
 
 

日志

 
 
关于我

这是一个宣传后现代理论医学的博客.后现代理论医学是以系统理论为指导的新医学.该理论认为,在生命组织中干细胞是决定机体功能状态最基本的因素.通过调节机体内环境和为干细胞提供再生所需要的物质和能量,就可以使干细胞在患者体内原位再生,实现器官重构,使器质性病变得到治疗.现在,已经在北京医药信息学会内成立了后现代理论医学专业委员会,杨鸿智是主任委员.

网易考拉推荐

(10)物质动理论  

2013-05-05 12:23:38|  分类: 干细胞病 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

10)物质动理论

 

是不是可以用有简单的力相互作用着的粒子的运动来解释热现象呢?在一个闭合的容器里装着一定质量和一定温度的气体(例如空气),把气体加热,我们就提高了它的温度,因而也增加了它的能量。但是这种热与运动的关系是怎样的呢?根据前面我们已经贸然接受过的哲学观点以及热是由运动所产生的说法,我们可以认为热和运动是有关系的。如果每一个问题都是力学问题,那么热必须是机械能。动理论的任务就在于用这种方法来表达物质的概念。根据这种理论,气体便是无数个粒子或分子的集合体,分子朝着各个方向运动,相互碰撞,并且在每次碰撞之后改变自己的运动方向。在这样的气体中的分子必定有一个平均速度,正如在人类社会中有平均年龄和平均收入一样,因此也必定有粒子的平均动能。容器中的热越多,平均动能就越大。根据这种想象,热不是与机械能不同的一种特殊形式的能,其实它就是分子运动的动能。任何一个一定的温度都对应有每个分子的一定平均动能。事实上这不是一个随便的假定,假使我们要作出物质的一致的力学图景,那么我们就得把一个分子的动能看作是气体温度的量度。

 

这个理论不单是一个想象而已。我们可以证明气体动理论不但与实验相符,并且实际上使我们对许多情况有一个更深刻的理解。这可以用几个例子来说明。

 

假设我们有一个容器,用一个能够自由移动的活塞将它封闭住(图22)。容器中装有一定数量的气体,这些气体的温度保持不变。如果起初活塞静止在某个位置,那么它可能因减重而上升,或者因加重而下降。要把活塞往下推,必须施加外力以抵抗气体的内压力。照动理论来说,这种内压力的机构是怎样的呢?构成气体的数量极大的粒子是向各方面运动的,它们撞击容器的壁与活塞,撞了又跳回来,正如掷到墙上的球一样。大量粒子的这种不断撞击,反抗着作用在活塞与重物上的向下作用的重力,因而能使活塞保持在某个高度上。在一个方向上有不变的重力在作用,在另一个方向上则是分子的大量不规则的碰撞。假使两方面保持平衡,那么所有这些小的不规则的力对活塞的有效作用必须与重力相等。

 

假使把活塞推下去,它把气体压缩到只有原来体积的一部分,譬如说,压缩到12,而它的温度却保持不变,那么根据动理论我们可以预料有什么情况会发生呢?难道撞击力会比过去更有效些或更无效些吗?现在粒子比过去更紧密了,虽然平均动能还像以前一样,但是粒子撞击活塞的次数更多了,因此总的力可能要大些。根据动理论所表达的图景可以清楚地看出,要使活塞保持在更低的位置,需要更大的重力。这个简单的实验情况是大家都知道的,但是它的预测却是从物质动理论合理地推出来的。

 

再研究另一个实验。取两个容器,它们装有体积相等的不同气体,如氢与氮,两者的温度相同。假设两个容器都用同样的活塞封闭住,加在活塞上的重力也相等,简单说来,这就是表示两种气体具有相同的体积、温度与压力。因为温度相同,那么根据动理论,粒子的平均动能也相同。因为压力相同,那么两个活塞都是受到同样的总的力所撞击。平均起来,每个粒子具有相同的能量,两个容器具有相同的容积。因此虽然在化学上来说这两种气体是不同的,但是每个容器中的分子数必定是相等的。这个结果对理解许多化学现象是很重要的,它表明在一定的温度和压力下,在既定的容积中的分子数不是某一种气体所独有的,而是一切气体都有的。特别是动理论不仅预言这样一个普遍的数的存在,而且还能帮助我们来决定这个数。我们以后还要再研究这个问题。

 

物质动理论如实验确定那样,无论在定量方面或是在定性方面,都能解释气体定律。而且,虽然这个理论的最大成就是在气体方面,但它却不限于气体。

 

气体可以用降低温度的方法使其液化。降低物质的温度就意味着减小它的粒子的平均动能,因此,液体内粒子的平均动能比相应的气体的粒子的平均动能小些是很显明的。

所谓的布朗运动,首先给液体内粒子的运动作了一个令人信服的说明。这个奇异的现象,如果没有物质动理论,便会是完全神秘和不可理解的。它是植物学家布朗(Brown)首先观察到的,而80年之后,在20世纪之初它才得到解释。只要有一架不要求是质量特别好的显微镜,就可以观察布朗运动。

 

布朗当时正在研究某些植物的花粉粒子,按他的话说,那是:

花粉粒子或其他粒子的最大尺寸,其长度从11600厘米至1200厘米(1400英寸至15000英寸)。

 

接着他又说:

 

当我观察这些浸在水中的粒子时,我发现很多都在不停地运动着……在经过多次重复的观察以后,我确信这些运动既不是由于液体的流动也不是由于液体的逐渐蒸发所引起的,而是属于粒子本身的运动。

 

布朗所观察到的是悬浮在水中而且用显微镜可以观察到的粒子的不停的扰动。这是一幅很动人的图像!

 

观察到的这种现象是否与选择哪一种特殊的植物有关系呢?为了回答这个问题,布朗便用许多种不同的植物来重复做这个实验,他发现所有这些花粉粒子,只要足够小,只要悬浮在水中,都会表现这样的运动。他进一步发现无论是无机物还是有机物的微粒都有同样不停的无次序的运动。他甚至用石头研细的粉末来试验,也观察到这种运动(参看书末的附图Ⅰ)!

怎样解释这种运动呢?这种运动似乎和过去的全部经验都矛盾。譬如说,每隔30秒钟对悬浮着的一个粒子的位置进行一次观察,就会看出它的路径的奇怪形状。可惊异的是这种运动看来是永无止境的。把一个摆动着的钟摆放在水中,如果不加外力推动,它很快就会静止。一种水不减弱的运动的存在,似乎跟所有以前的经验都是矛盾的。这个困难,也由物质动理论圆满地解决了。

 

甚至用现代最强力的显微镜来观察水,我们也不能像物质动理论所描述的那样看得到水分子和它的运动情况。因此,我们可以断定,假如把水看作是粒子的集合体的理论是正确的,那么这些粒子的大小必定越出了最好的显微镜的可见限度。我们且不要攻击这个理论,并且假定它是一个描写实在的合理图景。用显微镜可以看到的布朗粒子是受到更小的水粒子所撞击。假如被撞的粒子足够小的话,便会发生布朗运动。它之所以会发生,是由于碰撞的不规则性和偶然性,因而从各方面来的这种撞击是不相等的,因而也不可能将它平均。这样,能够观察到的运动倒是观察不到的运动的结果了。大粒子的行为在某种程度上反映分子的行为,可以说,它是把分子的行为放大到能够在显微镜中看得见的程度。布朗粒子的运动路径的不规则性反映了构成物质的较小粒子的路径的同样不规则性。从上述情况我们可以得到这样的结论:如果对布朗运动作一个定量的研究,能够使我们对物质动理论有一个更深刻的理解。很明显,可见的布朗运动与不可见的撞击分子的大小有关。如果那撞击分子没有一定数量的能,或者换句话说,没有质量与速度,就不会有布朗运动。因此,布朗运动的研究,能使我们决定分子的质量,这是不足为奇的。

 

经过理论方面与实验方面的艰苦研究,动理论定量的特色也已经形成了。由布朗运动现象所产生的线索,便是形成定量数据的来源之一。从完全不同的线索出发,用不同的方法也可以得到同样的数据。所有这些方法都支持同一个观点,这个论据是很重要的,因为它说明了物质动理论的本质上的一致性。

 

由实验和理论所得到的许多定量结果中,这里只引用其中的一个。假使我们有1克最轻的元素氢,我们问:在这1克氢中有多少个粒子呢?这个问题的答案不仅回答了氢的问题,而且也回答了所有其他气体的问题,因为我们已经知道,在什么条件下,两种气体会有同样数目的粒子。

 

根据对悬浮在水中的粒子的布朗运动的某些测量结果,理论使我们能够回答这个问题。答案是一个惊人的大数字:3后面接23个数字。1克氢中的分子数是:

 

303×1023

 

设想1克氢的分子都增大到可以用显微镜看得见,譬如说,它的直径达到了12000厘米,就是说和布朗粒子的直径一样大。要把它们用一个箱子紧密地装起来,那么,这个箱子的每边大约是半公里长!

 

我们只要用上面所指出的数字去除1,便可以很容易地计算出一个氢分子的质量,答案是一个小得出奇的数:

 

3.3×10-24

 

这个数代表一个氢分子的质量。

 

布朗运动的实验,只不过是决定这个数的许多独立实验中的一个,而这个数在物理学上有很重要的作用。

 

在物质动理论和它所有的成就中,我们看到,把一切现象的解释都归结为物质粒子间力相互作用的这个普遍的哲学预示已经实现了。

 

 

  评论这张
 
阅读(94)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017