注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

杨鸿智-后现代理论医学博客

《后现代医学》、《正反馈医学》、《自体原位器官重构技术》

 
 
 

日志

 
 
关于我

这是一个宣传后现代理论医学的博客.后现代理论医学是以系统理论为指导的新医学.该理论认为,在生命组织中干细胞是决定机体功能状态最基本的因素.通过调节机体内环境和为干细胞提供再生所需要的物质和能量,就可以使干细胞在患者体内原位再生,实现器官重构,使器质性病变得到治疗.现在,已经在北京医药信息学会内成立了后现代理论医学专业委员会,杨鸿智是主任委员.

网易考拉推荐

(17)量子力学入门(2)  

2013-05-15 00:01:25|  分类: 干细胞病 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

17)量子力学入门(2

http://beta.wikiversity.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6%E5%85%A5%E9%97%A8

 

解出λ得:

 

这个方程用半径“r”表示出了决定频率和波长的轨道周长,就这样,因为半径和周长之间的固有关系,2π再一次出现在了量子力学中。[24]

 

1925年,当维尔纳?海森堡在完成他的完整量子理论表述过程中(原文可能有问题,写的是波函数,怀疑写错了人),傅里叶级数是计算中经常出现的数学形式,而在傅里叶级数中2π这个因子可以说是无处不在。引入约化普朗克常数(h/2π)后,可以约去表达式中大多数的2π,从而使方程更加简洁。数年之后,约化普朗克常数出现在了狄拉克方程中,它也因此得名“狄拉克常数”。现在,虽然我们已经谈了这么多关于这个常数的发展和历史,却还没有涉及到更深层的意义---为什么在理论运用中它比普朗克常数更简便或是更普适?

 

如上所述,任何电磁波的能量等于它们的频率乘以普朗克常数,而波长等于频率乘以光速。波是由波峰和波谷组成的。经过一个完整的周期,波上的各点会回到振动的初始位置。例如,某一点开始的时候是波峰,经过一个周期后它将再次回到波峰。一个周期恰好和一个圆周相对应,都是360度,也就是2π弧度。1度是指弧长是圆周长的1/360的圆弧所对应的角度的大小。随着圆的转动,圆周上的一点会画出正弦曲线的轨迹。(观看相关演示动画,请访问[1]

 

现在取一段圆弧,使其长度等于其半径。用直线把圆心和圆弧的两端分别连起来。这两条半径的夹角就是1弧度。圆周和波的周期都是2π弧度。既然一个周期等于2π弧度,“h”除以2π后,这两个2π就相互抵消了,只留下一个以弧度为单位的变量。因此如果把h/2π表示成一个常数,乘以波的频率(周期除以2π)时,一弧度就对应着一焦耳的能量。约化普朗克常数,读作“h一横(h-bar)”,表示为:

 

约化普朗克函数使计算电磁波的能量时使用的单位由周期变成了弧度。h?的作用只是将频率的单位(量纲)转换成能量的单位(量纲)。

 

之所以在量子力学的数学表述中更多出现的是约化普朗克常数,主要有以下原因:角动量和角频率都是以弧度为单位的,使用?可以免去角度和弧度之间的相互转换。在量子力学的方程中使用?可以化简很多分式。而在其他一些情况下,比如波尔的原子模型中,表述轨道角动量时自然而然的就出现了?h/2π)。

 

h 的数值取决于波长以及能量的单位的选取。如果能量使用电子伏特(eV,粒子物理学的常用单位)而波长使用埃(?ngstr?m10-10m)作为单位,那么一个光子的能量大约是eV = 12400/λ?ngstr?m。这种表示方式容易记忆且避免了使用国际单位制中的小值。[25]

 

玻尔的原子模型

 

玻尔的原子模型,氢原子的电子正在跃迁至n=1的基态

 

1887年,J?J?汤姆生领导的一个研究小组发现了一种带着一个单位负电荷且质量极小的基本粒子并把它命名为电子。通过金箔实验,物理学家认识到物质的内部几乎是真空的,原子核只占了原子很小的一部分。[26] 这个事实清楚之后,就可以很自然的假设负电子在轨道上环绕着原子核运动,就像太阳系的行星那样。但这种简单的类比的后果就是:根据经典电动力学,电子在运动时会不断向外辐射电磁波,失去能量的电子最终将会坠入原子核中。以此推论,电子大约只能存在百分之一微秒[27]。因此,20世纪初困扰物理学家们最大的问题就是:电子是如何保持稳定轨道的?

 

1913年,为了解决这个问题,尼尔斯?玻尔假设了电子的轨道是量子化的(不连续)。这就是著名的玻尔原子模型。玻尔的基本假设是:电子只能占据原子核外的特定轨道[28]这些轨道能够在对单一元素的原子的光谱分析后得出。

 

波粒二象性

 

玻尔指出了粒子说和波动说都不能独立的说明经实验观测到得光的特性。所有形式的电磁辐射都在一些实验中表现出波动性,却又在别的一些实验中表现出粒子性。以此为根据,玻尔阐明了对应原理,此原理针对一些相对应的概念,如波动性和粒子性,位置和动量等。

 

1924年,德布罗意从玻尔的发现中发展出了波粒二象性理论用以描述亚原子粒子同时具有的波和粒子性质的特性,并给出了数学表述。德布罗意推广了玻尔模型,一个绕着原子核旋转的电子能够被看作具有一些类似于波德性质。特别的是,只有环绕原子核形成驻波时,电子才能被观测到。“驻波”的波形无法前进,因此无法传播能量。它的一个典型例子是两端固定的一根弦,拨动两端固定张紧的弦使其振动,一开始需使弦的两端的振幅为零,使波经两固定端反射可干涉产生驻波。同时,弦的两固定端必为节点(也就是振幅为零的点)。当弦上产生驻波时,弦长L为半波长的正整数倍。而回到原子模型上,如果要使波动运动轨迹光滑衔接形成一个简单闭合曲线,波必须由波峰和波谷连续构成。而电子的轨道是圆周轨道,每一个电子就必须以它自己的驻波形式来占据特定轨道。

 

现代量子力学的发展

 

完整的量子论

 

1932年诺贝尔物理学奖获得者,维尔纳?海森堡在1925年建立起了完整的量子力学理论。

 

薛定谔波动方程

Основна статия: 薛定谔方程

 

1925年,基于德布罗意的物质波模型,埃尔温?薛定谔假设电子就是那样环绕原子核的波,然后对电子的行为进行了数学分析。他并没有把电子比作绕行星转动的卫星,而是直接把它们看作在原子核周围的某种波,并且指出描述各个电子的波函数都是互不相同的。而这种波函数所遵守的方程式被命名为薛定谔方程,以纪念他为量子力学做出的贡献。薛定谔方程分别从三个性质出发描述了波函数(后来沃尔夫冈?泡利又加入了第四个性质:自旋):

 

轨道的名称表明了粒子波的能量高低(离原子核越近能量越低)。

 

轨道的形状,球形或者其他。

 

轨道的倾角,决定了电子对z轴的磁矩。

 

这三种特性被归纳成描述电子量子态的波函数 。量子态代表着电子的这些特性,它适时的描述了电子的状态。电子的量子态由它的波函数给出数学描述,我们用希腊字母 来表示波函数( 读作"[sai]").

 

这三个被波函数描述的特性分别被称之为电子的量子数。第一个描述轨道能量的量子数叫作主量子数,这个量子数对应着波尔原子模型里决定原子能级的n

 

第二个量子数,角量子数,用用l(小写L)来表示。它描述了轨道的形状,轨道的角动量 决定了轨道的形状。角动量的变化率等于系统所受合外力的力矩。换句话说,角动量反映了旋转物体在外力作用下其速度改变的难易程度。角量子数 "l"代表着电子对原子核的角动量。而每一种轨道形状有不同的符号表示。第一种形状用字母s表示 ("因为球形‘spherical’首字母是S"). 第二种形状用字母p表示哑铃形。另外还有一些复杂的形状(请访问 Atomic Orbitals)分别用字母 d, f以及g来表示。 碳原子的条目详细的描绘了碳原子的轨道。

 

薛定谔方程的第三个量子数描述了电子的磁矩,此量子数用m或带下标lm来表示,这是因为磁矩跟第二个量子数l有关。

 

19265月,薛定谔证明了海森堡的矩阵力学和他的波动力学对电子性质和行为的预测结果是相同的;而它们在数学上也是等价的。但他们仍然在对各自理论的物理诠释上无法取得一致的意见。海森堡认为间断的量子跃迁的存在是很自然的,但薛定谔仍寄希望于得到一个连续性的,传统的,如同波动说那样的理论来让(用威廉?韦恩的话来说[29])"海森堡的愚蠢的量子跃迁"从物理学里彻底消失。[30]

 

不确定性原理

Основна статия: 不确定性原理

 

1927年,海森堡利用他的矩阵力学和一些理想实验推导出了一个微观尺度下物质和能量的重要结论。他发现在测量粒子动量和位置的时候会导致h/4π的误差(两者误差相乘)。测量时位置的误差越小,动量的误差就会变得相当大。而h/4π就是这个误差的下限(也就是说两者误差的乘积大于等于h/4π)。这一结论最终被称作不确定性原理。

 

量子力学严格限制了测量处于运动状态的亚原子粒子时的精确度。观测者可以精确测量粒子的位置或是动量,但无法同时精确测量两者。这个限制意味着对其中一种属性的测量达到极高的精确度时,对另一种属性的测量的误差将会趋于无穷大。

 

海森堡在早期一个关于不确定原理的演讲里这样提到了玻尔模型: Template:Quotation

 

不确定性原理给出的一个重要结论就是在某一时刻,我们不能确定电子在轨道上的确切位置,我们只能给出电子在某一位置出现的可能性。计算出电子可能出现的位置,给出可能出现的相关轨道,我们就可以给出一种和传统图景不同的原子描述——电子在原子核周围形成了电子云,它分布在原子核周围,在靠近原子核的一些区域,电子云拥有最大的密集度,这代表电子在这些区域出现的概率最大,在远离电子的区域,电子云变得稀疏了,电子在这些区域出现的概率较小。数学上我们把这种点状云称为概率分布,这是它的一种较形象的表述方式。波尔的原子模型中每个轨道对应的量子数n就成为了n维球面,被描绘成环绕原子核的概率电子云。

 

如果一个电子的位置无法被测量出,我们就不能描述它处于哪一个特殊的位置了。我们能做的就是计算出电子在轨道上某些位置出现的机率。 换句话说,量子力学只能给出发生某种可能的结果的机率。海森堡从不确定原理出发,继续思考观测电子的问题,得出的结论居然是微观粒子只在我们观察它的时候才存在!注意他针对的是粒子本身,而不是它们的轨道。尽管他所阐述的理论看上去是荒诞且强烈的违背者我们的直觉的,量子力学仍然只能从概率分布出发来计算给定轨道下电子的位置。

 

尽管海森堡的矩阵力学允许电子出现在无限多的位置,这并不意味着电子可以出现在空间中的每一个地方。有一些条件限制了电子,使其必须占据某些特定的概率分布描述的位置。波尔模型是通过电子的能级来描述电子行为的,矩阵力学和它是相容的。因此,一个电子所出现的n维球面对应着离原子核某一特定距离,而正是这个距离决定了电子的能量。正是这个条件制约了电子的位置。电子可能存在的位置的数目又被称为相空间中的相格数[31]根据不确定原理,经典相空间不能被无限细分,因此在一个轨道上电子能占据的位置数就是有限的了。电子在原子里的位置取决于它的轨道,而一个轨道终止于原子核,并且离下一个轨道开始的位置很近。

 

自牛顿以来的经典物理学告诉我们,如果我们知道某一时刻行星和恒星的位置和运动状态,我们就能够预测它们在未来任何时刻运动状态。不确定原理则告诉我们这对于亚原子世界是不适用的。我们不能同时精确测量出微观粒子位置和动量,对于粒子未来的运动状态,我们只能给出一种概率分布,该分布只能告诉我们在未来它处在这种状态的可能性。

 

源自波粒二象性的不确定性原理的影响只在亚原子尺度时显现出来。尽管这些现象违背了我们的直觉,以不确定原理着称的量子力学仍然不断引领着科学技术的进步,如果没有它,我们也就不会拥有电子计算机,荧光灯以及医学影像设备。

 

波函数坍缩

 

对于单个电子而言,薛定谔的波动方程及其独特的波函数和海森堡的量子化的点粒子的概率分布一样在空间中散开,因为波本身就是分布很广的扰动而不是点粒子。因此,薛定谔的波动方程能够得到和不确定性原理相同的结果,因为位置的不确定性在波的扰动的定义中就表现出来了。只有海森堡的矩阵力学才需要定义不确定性,因为它是从粒子的观点出发的。薛定谔的波函数显示电子总是处于概率云中,在它像波一样展开的概率分布中。

 

马克斯?玻恩在1928年发现,薛定谔的波函数的平方(为了得到振幅的平方)是电子位置的概率分布。[32]对于电子的位置可以直接测量而不会得到一个概率分布,是因为电子暂时失去了波的性质。没有了波的性质,薛定谔的关于电子的波的特性的预言也都失效了。对粒子的位置的测量使粒子失去了波的性质,以至于薛定谔的波动方程失效了。电子一经测量再也不能被波函数所描述,它的波长变得很短并且它与测量设备的粒子相互纠缠,这种现象就是所谓的坍缩。

 

本征态和本征值

 

泡利不兼容原理

 

泡利不兼容原理表明了一个原子里的每一个费米子必然具有不相同的量子状态。它的一个非常重要的推论就是对任何原子,两个电子都不能具有同样的量子态。

 

沃尔夫冈?泡利给出了泡利不兼容原理的简单表述: Template:Quotation

 

沃尔夫冈?泡利 的不兼容原理是从他称做“量子自由度的双重值”的理论发展而来的。这个理论是为了解释氢原子光谱中成对出现的两根非常接近的谱线。这个现象意味着原子的磁矩比预先设想的要大。

 

1925年初,乔治?乌伦贝克和塞缪尔?高德斯密特提出电子可能像地球那样绕自身的轴自转的假设,他们把这种特性称之为自旋。自旋能够解释多出来的那部分磁矩,并且让两个电子在不违反不兼容原理的条件下占据同一个轨道成为了可能——只需要它们自旋方向相反。这时就需要一个新的量子数来描述原子自旋的动量。[33]

 

就这样,我们已经确定电子具有四个量子数:

 

n, 主量子数;

l, 角量子数;

ml, 磁量子数;

ms, 自旋量子数。

泡利举了一个例子:

 

“在氦原子中有两个电子占据1 s轨道,根据不兼容原理,这两个电子必须有不同的量子数,而n, l, and ml这几个量子数是相同的,而且他们的自旋量子数s的值都等于1/2[34],因此它们的ms一个是+1/2,而另一个是-1/2.

 

狄拉克波动方程

Основна статия: 狄拉克方程

 

1928,保罗?狄拉克推广了用于描述自旋电子的泡利方程而使之与狭义相对论相容.于是这个理论便能够处理速度接近光速的微观粒子的运动问题,比如在轨道上运动的电子。使用最简单的电磁相互作用理论,狄拉克算出了由电子自旋而产生的磁矩,他发现实验观测到的值和经典物理所想象的那种自旋所得出的值大了很多。他完全的解决了氢原子光谱的问题,并从他的理论中推导出了索末菲关于氢原子光谱精细结构的公式。

 

狄拉克方程有时会解出电子具有负能阶,于是他提出了一个新颖的假设:在动力学空间中存在着正电子。这最终导致了多粒子量子场论的诞生。1930年,狄拉克编写了关于量子力学的第一本现代意义上的教科书,书中整合了海森堡的矩阵力学,薛定谔的波动力学和他自己的量子变换理论,同时也使之与狭义相对论相适应。量子力学原理(The Principles of Quantum Mechanics)是公认的经典著作,直到今天也具有相当的参考价值。

 

直到现在,所有的量子理论主要都是集中在对氢原子光谱的研究上。根据旧量子论,每一种元素的原子的光谱都是独特的。由于电子和原子核不能被直接观测到,科学家们不可能直接去研究它们的行为。即使在今天,我们使用扫描隧道显微镜,也只能得到模糊不清的原子图像。迄今为止,对量子力学的实验验证还只是在对氦和氢原子的辐射光谱研究上,它的数学表述被用来解释和说明辐射光谱。因此,量子力学有时也被认为是一种数理物理学。

 

量子缠结

Основна статия: 量子缠结

 

两个量子的迭加与可能的解。

 

包立不兼容原理指出在同一系统下的两个电子不可能处于同一状态。大自然抛弃了这种可能性,但却允许两个电子可以在上面「迭」有两种状态。回想波函数穿过双狭缝并在一瞬间以迭加的其中一种状态呈现在显示屏幕上。没有什么是确定的,除非迭加的波「坍缩」,这时候就会有一个电子以符合概率的方式立即显示在某个地方,这个概率即波形迭加后的振幅的平方。上述情况已十分抽象难解了。关于光子的缠结,在此有一个较为具体的思考方式,有两个光子在同一事件中迭加了两个相对立的状态,如下︰

 

可以试着在脑海中想象,把迭加的其中一个状态标记为蓝色,再把另一个状态标记为红色,在稍后会显现成紫色的状态。两个光子是在同一个原子事件中产生出来的。这两个光子可能是水晶吸收特定频率的光子并发射出频率为原始值之半的两个光子所激发而成的。因此这两个光子显现出「紫色」。如果有位实验者现在要作测定光子是红或蓝的实验,这个实验会把光子从原本具有「红」、「蓝」两个状态改变成只有其中一个状态。这个爱因斯坦曾经如此想象过的问题是,如果其中一个光子不断在实验室的镜子之间持续弹跳,而另一个光子已经移动到最近的星星的一半路程,当成对的其中一个光子显现出自身是红或是蓝的时候,就意味着那颗远在千里之遥的光子也必须失去「紫色」的状态。故每当检查光子的时候,光子就必定显现成相对于成对光子的另一个状态。

 

假设有某些物种带有雄性或雌性这两种性别特征的遗传潜力。牠们会随着环境的变化转变成雄性或雌性。牠们也许会一直保持着不确定的状态直到天气转变成严寒或酷暑。然后牠们会显现出一种性别特征,以后天改变的方式、雄激素或雌激素等高阶系统锁定到那个性别状态。自然界中确实有符合上述情节的情况,不过现在要再想象如果有一对双胞胎出生,并且有一股自然之力禁止这对双胞胎显现出同一性别。之后如果双胞胎的其中一个到了南极,并转变成雌性,此时另一个双胞胎将无视当地气候直接转变成雄性。这样的世界相当难以解释。在南极洲的一只动物会影响到牠那远在红木市的双胞胎兄弟这种事要怎么样才会发生?美国加州?心电感应?什么?要怎么样才能瞬间作出变化?即使是来自南极洲的无线电讯息都要花费一段时间。

 

为了证明量子力学是个不完全的理论,爱因斯坦从理论的预测开始着手,为了展现量子力学是一个尚不完备的理论,爱因斯坦从该理论对于那些过去已经相互作用的两个或更多粒子在之后的测量中可以显示出很强的联系这一预言入手。

 

量子电动力学

Основна статия: 量子电动力学

 

量子电动力学是关于电磁力的量子理论。要理解它需要先理解电磁学。电磁学之所以被称作“电动力学”因为它描述了电和磁力之间的动力学作用。而电磁学又要从电荷开始讲起。

 

电荷是电场的源,也可以说是它产生了电场。电场是能够对空间中任意位置的任何带电粒子施加作用力的场。这些粒子包括电子,质子,甚至是夸克等等。当有力施加时,电荷开始运动,于是就产生了电流和磁场。而变化的磁场又导致了电流的产生(运动的电子)。这个电和磁相互作用的场被作为一个整体而成为电磁场。

 

描述带电粒子的相互作用,电流,电场,以及磁场的物理学理论就是电磁学。

 

1928年,保罗?狄拉克给出了关于电磁学的相对论性质的量子理论。这就是现代量子电动力学的原型, 在这个理论里已经有了现代理论中的很多重要基础。但是,在这个理论中的计算中出现了无法消除无穷大的问题。这个问题最初被理论的创始人看做暂时的疑难并终将得到解决。而重正化方法的出现最终解决了这个问题,它也成为量子电动力学和其他一些物理学理论自我完善的重要工具。并且,在1940年代末,费因曼图向人们展示了所有相互作用的图景。它展示出了电磁力的本质是带电粒子交换光子的相互作用。

 

量子电动力学所预测的一个例子是已经被实验证实的兰姆移位。由于电磁场的量子效应,一个原子或离子的能级会轻微的偏离没有量子效应时的位置。而表观上,光谱谱线会平移或分裂。

 

20世纪60年代,物理学家们意识到量子电动力学在高能状态将彻底失效。这也导致了粒子物理学标准模型的建立,它的出现解决了高能状态下的失效问题。标准模型使得电磁作用和弱相互作用相统一。这就是弱电作用理论。

 

诠释

Основна статия: 量子力学诠释

 

毫无疑问,量子力学的威力是人类之前建立的任何一个理论无法匹敌的。它完美的解释了经典力学无法解释的实验现象,成功的预言了许多实验发现,并把大量的其他理论归纳入自己的体系中。 量子力学(特别是量子电动力学被称为人类有史以来最精确的理论)在实验预测上的精确度超出了几乎其余所有科学理论。 而且,现代物理学几乎所有的基础理论,甚至是狭义相对论都被量子力学所归纳入量子场论。几乎所有的经典物理的内容都可以被看做是量子物理和相对论的特殊近似。经典物理仍能处理自然界的一种基本力--因质量而产生的万物之间相互吸引的万有引力的问题,[37]广义相对论是成熟的并被广泛接受的引力理论,目前量子场论还没有真正的渗透到广义相对论中。将广义相对论和相对论性量子力学联合起来的终极理论被誉为当代理论物理学的圣杯。

 

尽管量子力学在预言和实用上取得了空前的成功,它的很多方面却一直在挑战着我们的直觉。量子力学所描述的微观物质的行为,和我们由日常经验所能想象的实在是相差甚远。

 

有趣的是,对应原理和埃伦费斯特定理 预言了当一个系统尺度增大到一定程度时(使得普朗克常数可以忽略不计而趋于0),量子力学将会退化到经典力学(有一些例外,比如超流动性和超导性等等)。对于我们的日常生活来说,量子力学的效应完全可以忽略不计,经典描述已经足够了。但即便如此,物理学家们为了理解这个量子世界,已经做出了许多的量子力学诠释,从最正统的哥本哈根诠释到隐变量诠释再到多世界诠释等等。这些诠释已经超出了物理学的范围,也引起了更多人对它的关注。

 

 

-hansi-theme-font:minor-latin'>等)。量子态可以处于不同的物理状态。在前面处于恒定磁场中电子自旋的量子控制中,控制外场和作用的时间,就可以控制电子的自旋态,即是说,外部时空中的外场可以控制自旋——内部空间的变量。量子态是不同于经典物理资源的新型资源。以量子态和量子纠缠为基础,人们正在研究量子算法、量子计算、量子网络等,一个新的量子时代正在出场。

 

 

  评论这张
 
阅读(117)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017