注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

杨鸿智-后现代理论医学博客

《后现代医学》、《正反馈医学》、《自体原位器官重构技术》

 
 
 

日志

 
 
关于我

这是一个宣传后现代理论医学的博客.后现代理论医学是以系统理论为指导的新医学.该理论认为,在生命组织中干细胞是决定机体功能状态最基本的因素.通过调节机体内环境和为干细胞提供再生所需要的物质和能量,就可以使干细胞在患者体内原位再生,实现器官重构,使器质性病变得到治疗.现在,已经在北京医药信息学会内成立了后现代理论医学专业委员会,杨鸿智是主任委员.

网易考拉推荐

(17)量子力学入门(1)  

2013-05-14 23:57:51|  分类: 干细胞病 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

17)量子力学入门(1

http://beta.wikiversity.org/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6%E5%85%A5%E9%97%A8

 

维尔纳·海森堡和埃尔温·薛定谔,量子力学的两位奠基人。

 

量子力学(Template:Lang-en,或称量子论)是描述微观物质(原子,亚原子粒子)行为的物理学理论,量子力学是我们理解除万有引力之外的所有基本力(强相互作用,电磁相互作用,弱相互作用,引力相互作用)的基础(关于引力的量子力学理论请参见“量子引力”)。

 

量子力学是许多物理学分支的基础,包括电磁学,粒子物理,凝聚态物理,以及宇宙学的部分内容。量子力学也是化学键理论(因此也是整个化学的基础),结构生物学以及电子学,信息技术,纳米技术等学科的基础。一个世纪以来的实验和实际应用已经充分证明了量子力学的成功和实用价值。

 

量子力学始于20世纪初马克斯·普朗克和尼尔斯·玻尔的开创性工作,马克斯·玻恩于1924年创造了“量子力学”一词。因其成功的解释了经典力学无法解释的实验现象,并精确地预言了此后的一些发现,物理学界开始广泛接受这个新理论。量子力学早期的一个主要成就是成功的解释了波粒二象性,此术语源于亚原子粒子同时表现出粒子和波的特性。量子力学已经渗透到了比广义相对论更广泛的应用范围,Template:Fact比如微观领域(原子或亚原子),高能或低能状态以及超低温状态。

 

目录

 

1 第一个量子理论︰普朗克和黑体辐射

2 概述

2.1 意外

2.2 从意外走向曙光

2.3 从光谱学开始的突破

3 经典量子论

3.1 普朗克常数

3.2 约化普朗克常数(狄拉克常数)

3.3 玻尔的原子模型

3.4 波粒二象性

4 现代量子力学的发展

4.1 完整的量子论

4.2 薛定谔波动方程

4.3 不确定性原理

4.4 波函数坍缩

4.5 本征态和本征值

4.6 泡利不兼容原理

4.7 狄拉克波动方程

4.8 量子缠结

5 量子电动力学

6 诠释

7 另见

8 扩展阅读

9 注释

10 参考书目

11 外部链接

 

第一个量子理论︰普朗克和黑体辐射 [edit]

 

铁匠房里的高温金属加工品。橘黄色的光芒是物体因高温而发射出的热辐射之中看得见的那一部分。图片中每一样物品同样以热辐射形式散发着光芒,但亮度不足,且肉眼看不见较长的波长。远红外线摄影机可捕捉到这些辐射。

 

热辐射即物体因其自身温度而从物体表面发射出来的电磁辐射。如果有一个物体经过充分加热以后,会开始发射出光谱中红色端的光线而变得火红。再进一步加热物体时会使颜色发生变化,发射出波长较短(频率较高)的光线。而且这个物体既可以是完美的发射体,同时也可以是完美的吸收体。当物体处于冰冷状态时,看起来是纯粹的黑色,此时物体几乎不会发射出可见光,而且还会吸纳落在物体上的光线。这个理想的热发射体就被视为黑体,而黑体发出的辐射就称为黑体辐射。

 

19世纪末期,热辐射在实验上已有相当清晰的描述。维恩位移定律指出辐射最强处的波长,斯特凡-波兹曼定律指出每一单位面积发射出的总能量。当温度逐步递增时,光的颜色会从红色转成黄色,再转成白色、蓝色。当峰值波长移向紫外线时,蓝色波长中仍有足够的辐射会发射出来,使物体持续显现成蓝色。物体绝对不会变得看不见,可见光的辐射会以单调形式逐步增强。[1]所有频率段所发射的辐射量都会增强,但较短波长处的增强幅度相对要大的多,因此在强度分布里的峰值就会移向较短的波长。

 

不同温度下的黑体所辐射出的总能量和峰值波长。古典电磁理论过份高估增强幅度,特别是短波长的部分。

瑞利-金斯定律符合实验数据中的长波长部分。但在短波长部分,古典物理预测炽热物体所发射出的能量会趋于无穷大。这个被称为紫外灾难的结果显然是错的。

 

第一个能够完整解释热辐射光谱的模型是由马克斯·普朗克于1900年提出的[2]普朗克把热辐射建立成一群处于平衡状态的谐振子模型。为了符合实验结果,普朗克不得不假设每一个谐振子必定以自身的特征频率为能量单位的整数倍,而不能随意发射出任意量的能量。也就是说,每一个谐振子的能量都经过「量子化」。[3]每一个谐振子的能量量子与谐振子的频率成一比例,这个比例常数就称为普朗克常数。普朗克常数的符号为h,其值为 Template:Val,频率f的谐振子能量E为普朗克定律是物理学中第一个量子理论,也使普朗克荣获1918年的诺贝尔奖「为表扬普朗克对于能量量子的发现和促使物理学进步的贡献」。[5]但当时普朗克认为量子化纯粹只是一种数学把戏,而非(我们今日所知的)改变了我们对世界的理解的基本原理。[6]

 

概述 [edit]

 

意外 [edit]

 

19世纪末,人们普遍认为,经典物理的宏伟框架似乎已经接近完成了,但对于一些新的实验发现,经典物理不能作出合理解释,因此,这种观念受到了挑战。在宏观尺度(比如人,时空尺度)低速运动状态下,经典物理学理论有着完美的应用,但在解释大量微观粒子运动或物体以极高的速度运动时,经典理论遭受了巨大的困难。一种关于全局的观点认为,总的来说,从普通的观测中得到的结果受到了观测和理论预言的挑战(经典物理已经给不出可能的解释)。逐渐显露的景象是,宇宙表现出的行为倔强地违背着我们的常识。

 

在大尺度层面,相对论告诉我们对不同的观测者来说时间流逝的快慢并不相等。物质能转变为能量,反之亦然。两个以超过0.5倍光速的速度相向而行的物体无法以超过光的相对速度接近对方,时间历程会在接近大质量物体时变慢等等。事物并不是以我们的经验所习惯的方式运作着的。

 

在小尺度层面,奇异的现象更是无处不在。我们无法描述一个光子或电子从出发点到它被发现点之间的确定的位置或是运动轨迹。我们无法用日常的经验来判断一个粒子将在何处出现。它甚至会有一定的概率在一个封闭边界外出现。概率成为这个尺度上一切相互作用的关键因素。讨论任何原子尺度上的粒子的运动轨迹是没有意义的,因为如果我们要精确的测量粒子的位置,对其速度的测量的准确度就会降低,反之亦然。

 

在经典物理的时代,牛顿和他的追随者们相信光的本质是粒子,而另外一部分人(惠更斯等人)则认为光是在某种介质中传播的波。物理学家们并没有去寻找实验去证明某一方观点是否正确,而是设计了能够显示出光的频率等属于“波动性”的特征的实验,同时也有能显示出动量等“粒子性”特征的实验。而在此后的一些实验观测中,尺度较大的粒子,比如原子甚至是一些分子都显示出了“波动性”的特征。

 

最受人尊敬的物理学家谨慎的提醒道:“如果关于量子力学的某些解释显得“有意义”了,那么它多半会有瑕疵。”Template:Fact 1927年,尼尔斯·波尔这样写到:“如果有人没有被量子论所震惊的话,他就没有理解它。”

 

从意外走向曙光 [edit]

 

由左至右分别为︰普朗克、爱因斯坦、玻尔、德布罗意、玻恩、狄拉克、海森堡、泡利、薛定谔、费曼。

 

量子力学的基本问题源自17世纪对光的本质的研究以及19世纪初电和磁的本质被揭示出来。1690年,惠更斯提出了光的波动学说用以解释干涉和折射现象,[7]而艾萨克·牛顿坚信光是由极其微小的粒子构成的,他把这种粒子叫作“光子(corpuscles)”。由于牛顿本人的高度权威,微粒说在很长的一段时间占据着上风,1827年,托马斯·杨和奥古斯丁·菲涅尔用实验证明了光存在干涉现象,这是和“微粒说”不相容的。随着波动学说的数学理论逐渐完善,到19世纪末,无论是实验还是理论上,牛顿的理论都失去了以往的地位。

 

不久之后的一些实验现象如光电效应,只能把光看作“一份一份”的或是将其量子化才能得到合理的解释。当光照射在金属表面,电子会离开初始位置逸出。这种现象的一些特点只能在光的能量不连续的假设下才能被合理解释。在一个光电设备(照相机的曝光表等),光照射在金属感应器表面使得电子逸出。增加光的强度(同一频率的光)能够让更多的电子逸出。而如果想要使电子的速度更快也就是动能更大,必须增加光的频率。因此,光强只决定了光电流的大小,也可以说是电路中电压的大小。这个现象和传统的波动模型相悖,因为传统模型是源自对声波和海洋波的研究,这个模型的结论是,振动源的初相位也就是强度大小决定了所产生波的能量大小。同时,如何让表现出光的粒子性和波动性的实验现象和谐共处的问题,也摆在了物理学家的面前。

 

1874年,乔治·强斯顿·史东尼 首次提出了电荷的概念,它是带电体的基本量,不能再被拆分成更小的部分。电荷也就成为了第一个被量子化的物理量。1873年,詹姆斯·克拉克·麦克斯韦给出了著名的麦克斯韦方程,在理论上证明振荡的电路能够产生电磁波,这使得纯粹的通过电磁测量手段来测量电磁波的速度成为了可能。而测量结果显示电磁波的速度非常的接近于光速。也就是说,光也是一种电磁波。[8]亨里克·赫兹制作了一个能够产生低于可见光频率的电磁波(现在我们称之为微波)的仪器。[9] 早期研究的争议在于如何解释电磁辐射的本质,一些人认为这是因为其的粒子性,而另一些人宣称这是一种波动现象。在经典物理里,这两种思想是完全相悖的。

 

把光看做一种亚原子粒子无法解释这样的干涉现象--气泡上的彩色条纹(薄膜干涉)。除非我们把光看成一种波。这张图片展示了类似于水波的正弦波在厚度不均匀的胶片的两个表面反射而产生干涉现象的情景。这只是对光波的粗略的近似描述,以便于理解。

量子力学正式开始于马克斯·普朗克里程碑式的于1900年发表的关于黑体辐射的论文,[10]在这篇论文里,第一次出现了量子假设。普朗克的工作让人们认识到,无论是波动说还是粒子说都不能单独地合理地说明电磁辐射现象。1905年,爱因斯坦扩展了普朗克的量子假设,并用其成功的解释了光电效应现象。[11] 波尔给出了他的原子模型,这个模型充分的吸收了普朗克的量子假设。[12] 这些工作和20世纪初的其他一些工作创立了“旧量子论”。

 

1924年,路易·德布罗意提出了物质波假设。此假设的提出成为了一个转折点,从那以后,一个更高级且更完整的量子力学逐渐出现了。[13] 20年代中期对“新量子力学”或“新物理学”做出了重要贡献的物理学家还有,马克斯·波恩,[14] 保罗·狄拉克,[15] 维尔纳·海森堡,[16] 沃尔夫冈·泡利,[17] 以及 埃尔温·薛定谔。[18] 20世纪40代末到50年代初,朱利安·施温格,朝永振一郎,理查德德·费曼和弗里曼·戴森 合作或分别同时发展了量子电动力学,它研究的对象是电磁相互作用的量子性质(即光子的发射和吸收)、带电粒子的产生和湮没、带电粒子间的散射、带电粒子与光子间的散射等等。此后,穆雷·格尔曼 发展了关于强力的量子力学理论--量子色动力学。

 

从光谱学开始的突破 [edit]

 

当一束白光通过光学棱镜,光栅,锥面镜或者是雨后的彩虹时,它就被分解成了各种颜色的光。这样的光谱说明了,白光是由所有频率的有色光组成的。

 

在受热或者是受某种能量激发时,由单一元素组成的样品能够辐射出可见光,它的光谱被称为放射光谱。光谱和元素的种类以及外界加热的温度有关。和白光的光谱不同,这种光谱是间断的,并不是从紫色到红色连续出现每种颜色,而是分别形成了一些具有不同颜色的窄带(亮线),窄带与窄带之间存在黑色暗带,这就是所谓的“线状光谱”。放射光谱的谱线能够超出可见光的范围,我们能使用特殊的照相设备和电子设备检测到它们。

 

氢原子光谱中的亮线,图片来自NASA

 

氮原子光谱中的亮线

 

最初,人们认为原子电磁辐射的模式是类似于小提琴的一根弦“辐射”出声波那样的--不仅仅只有一种基本频率(整个弦一起在最低频率振动,同时向一个方向运动),还应该有高频谐波(频率是基频的整数倍,弦上不同的地方位移可能相反,类似于正弦波)的成分。但如何用数学语言简洁合理的描述某种元素的谱线分布一直困扰着人们,直到1885年,才由约翰·雅各布布·巴耳末给出了一个简单的公式来描述氢原子的谱线,如下:

 

表示波长, R是里德伯常量,而n 是大于2的整数 这个公式还能推广到适用于别的一些元素的原子光谱,但这不是关键的,我们感兴趣的是,为何第一个分数的分母是一个整数的平方?

 

进一步的发展便是彼得·塞曼发现了塞曼效应,随后亨得里克·洛仑兹给出了其物理解释(两人一起获得了1902年诺贝尔物理学奖)。洛伦兹假设氢原子的谱线是由电子跃迁产生的,这很容易由对原子本身的分析得到。由于运动的电子会产生电磁场,因此电子的行为就能够被外磁场所影响,就想磁铁之间互相吸引一样。

 

若假设电子在特定的不同的轨道上跃迁时向外辐射电磁波而形成谱线,赛曼效应就得到了合理的解释。但经典物理做不到这些,它不能告诉我们电子为何不螺线状坠入原子核,不能告诉我们为何原子的轨道有辐射谱线需要的性质来描述巴尔末公式,不能告诉我们为什么电子的光谱都不是连续的。而这一切,都预示着,变革即将到来。

 

经典量子论

 

量子力学始于对电磁波的谱系分析。我们最熟悉的电磁波就是可见光了。电磁波的频率(或波长)决定了它的能量,紫外线,X射线和伽玛射线具有比光更大的能量,而红外线,微波,无线电波的能量比光小。电磁波在真空中以光速传播。从此以后,粒子通常是指基本粒子或亚原子粒子。

 

普朗克常数

 

经典物理有一个关于黑体辐射问题的推论:当频率增大时,黑体辐射将会释放出无限大的能量(瑞利-金斯定律)。这个结论当然是荒谬的,可观测到的实验现象也是让人无法理解:黑体的辐射光谱的能量密度随着频率从零开始递增达到一个峰值(峰值频率和辐射源的温度有关)后再逐渐衰减至零。1900年,马克斯·普朗克给出了一个能够解释黑体光谱实验现象的经验公式(利用数学插值法),但他不能使之和经典物理相协调。 他得出的结论是,和从前大家所普遍相信的不一样,经典物理并不适用于微观世界。

 

普朗克的公式适用于任意的波长和频率的情况下,同时限制了发散的能量传输。“在经典物理里,...振动的能量仅仅取决于其振幅,而振幅的大小是没有任何限制的。”[19] 他的理论导出了一个重要推论,辐射的能量和辐射的频率成正比关系,频率越高,能量越大。为了解释这个推论,他做了这样的假设:宏观的辐射源(如黑体)是由数量巨大的基本谐振子构成的,振子的频率在零到无穷大之间分布(不久以后证实了这种基本谐振子就是原子或分子),于是普朗克做了更进一步的假设:任一振子的能量“E”和它的频率“f”成正比,而且是某种整倍数关系。如下所示:

 

在此式里,n =1, 2, 3,..。“h”由普朗克首先引入的是基本物理学常数,为了纪念他的功绩,被命名为“普朗克常数”。[20] h 是一个非常小的量, 大约是 6.6260693 × 10-34 焦耳-秒。

 

如果我们知道“h”和光子的频率,就能用这个方程计算出光子的能量。 给出一个例子:如果一束光的频率是540× 1012 赫兹。那么这束光的每一个光子的能量就是“h”× 540×1012 hertz)。因此光子的能量就是3.58 × 10-19 , 就是大约2.23 电子伏特。

 

如果用这种方式来描述波所具有的能量,波所携带的能量就成了一份一份的。普朗克将这种“份”命名为“量子” ,就这样,电磁波被重塑成了类似于粒子的物质。电磁波的能量被量子化后,量子力学诞生了。能量的大小和电磁波的频率息息相关。对于可见光来说,能量和颜色相关,因为颜色是由其频率决定的。但读者应该认识到,我们虽然用了诸如“份”,“波”,“粒子”等来自于宏观世界的概念来描述量子世界,但实际情况比这复杂的多,我们这样做是为了方便读者理解。

 

在早期关于光的研究中,存在两种相互竞争的描述方式光:作为波在真空中传播,或是作为微小粒子沿直线传播。普朗克表述了光的能量是量子化的,凸显出了它的粒子性。这种表述让我们明白了光是如何以量子化形式传播能量的。但是,光的波动性又是我们理解衍射和干涉之类的现象所必须的。

 

1905年,爱因斯坦引入普朗克常量来解释光电效应而获得成功,他假设一束光是由大量的光量子(也就是后来的光子)组成的,[21]在这个前提下,一个光子具有的能量是不变的且和其频率成正比关系(不同的光子具有不同的能量)。尽管这个建立在普朗克量子化假设上的理论听起来类似于牛顿的微粒学说,但爱因斯坦的光子同时还具有频率这种性质,其能量还和频率成正比,这是和过去不一样的,但无论如何,光的“粒子说”以一种折中的方式回来了。[22]

 

粒子和波的概念都源自于我们日常生活中的经验。我们不看“看见”单独的光子(事实上我们的观测就是利用光子来进行的),我们只能间接的观察它们的一些性质。比如我们从表面覆盖着油膜的水坑里看见光反射出各种颜色。把光看做某种波,我们能解释这种现象。[23]而对于其它一些现象,比如照相机中的曝光表的工作原理,我们又习惯把光看做某种和感光屏相撞的粒子。无论是哪种方式,我们都是在用日常生活中由经验得到的一些概念来描述那一个我们永远无法直接看到或者感知到的世界。

 

当然,无论是波动说或者粒子说都不能让人完全满意。总的来说,任何一种模型都只是对实际情形的近似描述。每一种模型都有它适用的范围,超出这个范围后,该模型也许就不能作出精确的描述了。牛顿力学对于我们的宏观世界来说仍是足够实用的。我们应该认识到波和粒子的概念都是源自于我们的宏观世界的,我们用它们来解释微观世界在一定程度上并不合理。有些物理学家,比如班尼旭·霍夫曼使用了“波粒二象性”来描述这种微观世界的“实在”,而在接下来的讨论中,使用“波”还是“粒子”将取决于我们从哪个方向去研究量子力学的现象。

 

约化普朗克常数(狄拉克常数)

 

普朗克常数最初只是连接光的能量和频率的比例因子。波尔在他的理论中推广了这个概念。波尔用原子的行星模型来描述电子的运动,但起初他并不理解为何2π和普朗克常数一起出现在了他推导出的数学表述中。

 

不久之后,德布罗意假设电子也如同光子那样具有频率,而其此频率必须满足电子在特定轨道稳定存在的驻波条件。这就是说,电子波圆周运动的轨迹必须光滑的衔接起来,波峰和波谷连续分布。中间不能有间断,周长的每一段都是振动的一部分,而且波形不能重叠。很自然的我们可以得出轨道的周长“C”是波长“λ”的正整数倍。我们在知道轨道半径“r”之后就能够计算出周长,在利用周长计算出电子的波长,数学表述如下:

 

 

  评论这张
 
阅读(98)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017